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Public health officials can greatly benefit their communities
by taking into account the results from the County Health
Rankings. The County Health Rankings rank counties
within each state based on a number of health outcomes
and health factors. Though these rankings are valuable,
they remain limited by their uncertainty quantification. This
paper aims to use Bayesian hierarchical models to rank each
county and measure differences between the County Health
Rankings and the estimated ranks. Estimated rankings are
produced for each of the health outcomes using two models.
One of the model uses state and county level random effects.
The other model uses state and county level random effects
and includes demographic fixed effects (race, ethnicity, sex)
and urbanization classification fixed effects. A successful
implementation can provide a framework for estimating
uncertainty in the rankings.
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1 Introduction
The County Health Rankings, published by the Univer-

sity of Wisconsin Population Health Institute, are publicly
available population and demographic based data that em-
phasize differences in health across all United States coun-
ties. While the County Health Rankings provide counties
with valuable health information, they are limited by not hav-
ing strong uncertainty quantification. This study will focus
on quantifying the uncertainty of the 2020 County Health
Rankings using Bayesian hierarchical models and spatial
statistics techniques [1].

In this paper, I intend to reproduce and extend the results
from the 2013 paper by Athens, et al. [2] “Using Empirical
Bayes Methods to Rank Counties on Population Health Mea-
sures” used County Health Rankings data from 2010, demo-
graphic Census data from 2008, and Urbanization classifica-
tion data from 2006. The data that will be used in this paper
will include County Health Rankings data from 2020, demo-
graphic Census data from 2018, and Urbanization classifica-

tion data from 2013. I plan on implementing similar hierar-
chical models to the paper by Athens, et al. using new data
with the intention to replicate their results. Because all of the
data is spatial, I intend to also look for spatial relationships
among US counties. Using both the hierarchical models and
spatial analysis, I also intend on predicting health outcomes
for counties with missing data.

This research can help highlight health inequities across
urbanization classes and demographics across United States
counties. The Wisconsin Health Rankings allow policy mak-
ers and public health officials make decisions for county im-
provements based on the outcome of the rankings and the
factors that went into receiving a certain ranking.

2 Related Work
The paper “Using Empirical Bayes Methods to Rank

Counties on Population Health Measures” by Athens, et al.
[2] uses 5 health outcome measures (premature death, self-
reported health, mean physically unhealthy days per month,
mean mentally unhealthy days per month, and percent of
live births with low birth weight) from the 2010 County
Health Rankings data and applies empirical Bayesian hier-
archical models to find county rank estimates. Athens, et
al. constructed two models – one with and one without de-
mographic fixed effects – to determine which one improved
rank precision. The paper used hierarchical Poisson models
to quantify the uncertainty for the “mortality rates underly-
ing premature mortality” [2], binomial models to model un-
certainty for low birth weight and self-reported health, and
log-normal models to estimate uncertainty for poor physical
and poor mental health days.

Charles Courtemanche, et al. write in their paper
“Modeling Area-Level Health Rankings” that “The [County
Health Rankings] also do not account for uncertainty, despite
their use of sample data for some components and an impu-
tation process for missing data” [3] which makes it challeng-
ing to assess statistical differences between counties. Not ac-
counting for error instills a false confidence in the Wisconsin
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County Health Rankings which then leads to misinformed or
inaccurate decisions. “Modeling Area-Level Health Rank-
ings” uses a Bayesian hierarchical model for factor analysis
to address problems pertaining to factor weighting and un-
certainty. The paper then evaluates uncertainty by finding
probability intervals for each of the rankings.

The paper “Measuring the spatial distribution of health
rankings in the United States” by Will Davis, et al. write
about a “method [that] relies on a factor analysis model
to directly compute weights for [the] rankings, incorporate
county population sizes into the variances, and allow for
spillovers of health stock across county lines.” [4] Their hi-
erarchical models assumed Gaussian distributions for each
of the health outcomes and they used posterior imputation to
populate missing data. Their work finds that county health
variation is highly dependent on demographic and economic
variation.

3 Data
In order to perform the goals outlined in this paper, a

number of data sources are necessary. First and foremost,
the primary data source for this project is data from the 2013
County Health Rankings [5]. The dataset consists of two
primary sections: health factors, and health outcomes. These
following data is broken up by each United States county
with sufficient data.

The health factors consist of features such as smoking
rate, obesity rate, mortality rate, chlamydia rate, access to
recreation, access to physicians/dentists, percent of popula-
tion that is uninsured, percent of medicare enrolled mam-
mography screenings, unemployment rate and many more.
The health factors are presented in a number of different
manners. Some is presented as a percentage (e.g. percentage
of population with limited access to healthy food), some is
presented as a count (e.g. annual violent crimes), and some
is presented as an average (e.g. average daily PM25). The
factors include 95% confidence intervals and Z-scores.

There are five primary health outcomes: premature
deaths, poor or fair health, poor physical health days, poor
mental health days, and low birth weight births. Premature
death is measured by years of potential life lost before age
75 per 100,000 people and weights younger deaths as heav-
ier than older deaths (e.g. a death at age 55 counts twice as
much as a death at age 65, and a death at age 35 counts eight
times as much as a death at age 70 [5]). Years of potential life
lost is more useful than mortality because it is a metric that
reflects a counties intention to care about preventable deaths.

Poor/fair health is measured by the percentage of adults
who consider themselves to be in poor or fair health (self-
reported and age adjusted) over a seven year period (2005-
2011). Measuring self-reported health quality helps quantify
challenges of disabilities and chronic diseases in a popula-
tion. This health outcome is highly correlated with mor-
tality – “people with ‘poor’ self-rated health had a twofold
higher mortality risk than persons with ‘excellent’ self-rated
health” [5].

Poor physical health days is measured as the average

number of poor physical health days self-reported in the past
30 days. Similarly, poor mental health days is defined as the
average number of poor mental health days in the past 30
days. This metric is useful for estimating how healthy peo-
ple are while alive and is a reliable estimate of recent health.
Average number of unhealthy days is also correlated with
higher unemployment, poverty, percentage of adults who did
not complete high school, mortality rates, and prevalence of
disability than counties with fewer unhealthy days [5].

Low birth weight births is measured as a percentage of
live births where the baby weighs less than 2500 grams (or
just under 8 lbs) over a seven year period (2004-2010). This
metric can give a good representation of infant morbidity.
Low birth weight is a valuable public health indicator of
health risks in all categories of the Country Health Rankings
health factors.

Notably, self-reported outcomes may differ by
race/ethnicity.

See Figure 1 for a summary of health factors and out-
comes. The length of life health outcome (mortality) in-
cludes premature death and the quality of life outcome (mor-
bidity) includes poor or fair health, poor physical health
days, poor mental health days, and low birth weight births.

For information on how the rankings are calculated and
further background on the data, visit the University of Wis-
consin Population Health Institute’s County Health Rankings
website.

Fig. 1: County Health Ranking Model
The dataset also includes various demographics for each

county with sufficient data in the US. The demographics
dataset consists of the total estimated county population, per-
cent of the population under 18 and over 65, percent of the
population that is non-Hispanic African American, Ameri-
can Indian and Alaska, Asian, Native Hawaiian/ Pacific Is-
lander, Hispanic, and non-Hispanic white, number of people
with not proficient in English, and percent of the population
that are female. These values were derived from the 2011
Census and the 5-year (2007-2011) American Community
Survey estimates.

The final dataset that is used for this analysis is the
National Center for Health Statistics (NCHS) Urban-Rural
Classification Scheme for Counties from 2013. The urban-
ization classification are based off of “the Office of Man-
agement and Budget’s (OMB) February 2013 delineation of
metropolitan statistical areas (MSA) and micropolitan statis-
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tical areas (derived according to the 2010 OMB standards for
defining these areas) and Vintage 2012 postcensal estimates
of the resident U.S. population” [6]. The classification val-
ues range from 1 to 6 where 1 is a large metropolitan area
and 6 is “non-core”. See Figure 2 for a map demonstrating
these classifications.

Fig. 2: Urbanization Classification. Map from [2]

4 Methods

For each of the five health outcomes (y – number of
events) for each state ( j) and county in each state (k), I in-
tend to use the same hierarchical model presented by Athens,
et al. [2] In each of these models, AA represents the African
American demographic for a given county, As represents the
Asian demographic for a given county, AI represents the
American Indian demographic for a given county, La rep-
resents the Latino demographic for a given county, Urb rep-
resents the urbanization classification [6] for a given county
(or Figure 2) and F represents the female demographic for a
given county.

4.1 Bayesian Hierarchical Models

Premature deaths is modeled using a Poisson hierarchi-
cal model with a log link as premature deaths follows Pois-
son distribution. Premature deaths are reported as the total
number of premature deaths and as years of potential life
lost. Parameter n j,k is the county population (used for the
offset) and parameter λ j,k is the event rate for a county (e.g.
premature death rate). e j is the state-specific random ef-
fect parameter and e j,k is the county-specific random effect
parameter. s j and s j,k are the standard deviation of state-
specific random effects and standard deviation of county-
specific random effects respectively. In Model 1, the prior
for the intercept was set to be distributed as a Gamma(7.5,1)
and in Model 2, the prior for the intercept was the same and
the prior for the β values was set to be Normal(0,10).

y j,k ∼ Poisson(λ j,k;n j,k)

Model 1 : log(λ j,k) = β0 + e j + e j,k

Model 2 : log(λ j,k) = β0 +β1AA+β2As+β3AI+β4La+
+β5Urb+β6F+ e j + e j,k

e j ∼ N(0,s2
j)

e j,k ∼ N(0,s2
j,k)

A Binomial hierarchical model with a logit link is used
to model low birth-weight births and self-reported health.
Low birth-weight births are reported as the total number of
low birth-weight births and as a percentage of the births in
the county. Self-reported health is reported as a percent-
age. In Model 3, the prior for the intercept was set to be
distributed as a Normal(1,1) and in Model 4, the prior for
the intercept and the β values were set to be Normal(1,1). In
Model 5, the prior for the intercept was set to be Normal(1,1)
and in Model 6, the prior for the intercept, σ and the β values
were set to be Normal(0,1).

y j,k ∼ Binomial(p j,k;n j,k)

Model 3,5 : logit(p j,k) = β0 + e j + e j,k

Model 4,6 : logit(p j,k) = β0 +β1AA+β2As+β3AI+β4La+
+β5Urb+β6F+ e j + e j,k

Poor physical health days and poor mental health days
are modeled using a Gaussian hierarchical model with an
identity link. Both poor physical health days and poor men-
tal health days are reported as averages. In Model 7, the
prior for the intercept and σ were set to be distributed as a
Normal(3,10) and in Model 8, the prior for the intercept, σ

and the β values were set to be Normal(0,10). In Model 9,
the prior for the intercept and σ values were set to be Nor-
mal(0,10) and in Model 10, the prior for the intercept, σ and
the β values were set to be Normal(0,1).

y j,k ∼ Normal(µ j,k,σ j,k;n j,k)

Model 7,9 : µ j,k = β0 + e j + e j,k

Model 8,10 : µ j,k = β0 +β1AA+β2As+β3AI+β4La+
+β5Urb+β6F+ e j + e j,k

σ j,k ∼ N(0,S2
j,k)

4.2 Missing Data
For the entire dataset, approximately 47.2% of data had

at least one missing value in at least one of the columns
(health factors, health outcomes, demographics, urbanization
classification). The entire dataset included 3141 rows with
one row for each county in each state. The reduced dataset
contained only 1661 observations. In order to use the full
3141 observations, an imputation method using R’s mice
package was implemented. In particular, for this dataset,
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the CART (Classification and Regression Tree) [7] method
was implemented. CART is a desirable method for imputa-
tion because it is resilient to outliers, does well with multi-
collinearity and skewed data, and can fit nonlinear functions
and handle interactions. The general procedure for CART is
as follows [8]:

1. Recursively partition the data
2. Fit a classification or regression tree
3. For each missing y value (often denoted as ymis), find its

final node in the fitted tree
4. Randomly draw from the members in the node and take

the observed random draw value as the imputation result

In particular, for each model described in further detail
below, I ran the mice CART imputation method with three
multiple imputation and a single iteration.

The results of the imputation were then pooled using the
brms (Bayesian Regression Models using Stan) library.

4.3 Sampling

Using the brms R package, the imputed data was
passed into each of the following models. For each imputed
dataset, the hierarchical Bayesian model was computed. The
Bayesian estimates (such as the posterior mean) for each pa-
rameter were then averaged to return a final estimate. Each
model is fit using a Stan back end.

Stan uses the Hamiltonian Monte Carlo (HMC) algo-
rithm – a “Markov chain Monte Carlo (MCMC) method that
uses the derivatives [(gradient)] of the density function being
sampled to generate efficient transitions spanning the poste-
rior” [9] – to provide Bayesian inference over a model condi-
tioned on the data. In particular, Stan uses a sampler called
the “No-U-Turn” (NUTS) sampler which is a form of HMC
sampling.

The traditional Metropolis-Hastings random walk algo-
rithm used to construct the Markov transitions in implemen-
tations of the MCMC fails in high-dimensional spaces. The
HMC algorithm is capable of making larger jumps away
from the initial point and thus better at exploring higher di-
mensional spaces. [10]

The goal of sampling is to draw samples for our pa-
rameters from a posterior distribution (probability of the pa-
rameters given the data). In order to do so, the HMC in-
troduces an auxiliary momentum parameter (denoted as ρ)
and the joint density between ρ and the models hyperparam-
eters (θ) defines the Hamiltonian which can be separated into
kinetic energy (the conditional probability) and potential en-
ergy (density of hyperparameters). The momentum param-
eter is drawn independently from a multivariate normal for
each iteration. The joint density p(ρ, θ) is evolved using

Hamilton’s equations:

dθ

dt
=− ∂

∂ρ
log p(ρ,θ) =− ∂

∂ρ
log p(ρ|θ)

=− log p(ρ)

dρ

dt
=

∂

∂θ
log p(ρ,θ) =

∂

∂θ
log p(ρ|θ)+ ∂

∂θ
log p(θ)

=
∂

∂θ
log p(θ)

Then with a new draw of a momentum parameter,
the current value of the hyperparameters are updated us-
ing a leapfrog integrator (numerically solving the differen-
tial equations). Finally, to account for numerical error in the
leapfrog integrator, a Metropolis acceptance step is applied
where the probability of keeping the proposed new parame-
ters (ρ∗,θ∗) (generated by moving from the previous param-
eters – ρ,θ) is:

min(1,exp(− log p(ρ,θ)+ log p(ρ∗,θ∗)))

If the proposed parameters are not accepted, the previous pa-
rameters are then used to initialize the next iteration once
again. [9]

4.4 Ranking
4.4.1 MSE Loss Ranking

In order to rank all US counties within each state
for each health outcome, the models described in section
4.1 were used to find estimates of the hyper parameters
(β0, ...,β6,e j,e j,k). The estimates were derived from the pos-
terior means of each posterior distribution. The parameters
were then used to find estimates ŷ j,k. The ŷ j,k values were
then grouped by state and then ranked (Rest ).

The rankings were then compared to the “true” 2013
County Health Rankings (Rtrue) using Mean Squared Error
(MSE) Loss [11].

L̂ =
1
k

k

∑
i=1

(Rest −Rtrue)
2

5 Evaluation and Results
5.1 Evaluation

In order to diagnosis each of the hierarchical models,
“Shiny Stan”, a user interface provided by Stan, was used.
Thinning is typically used to reduce the final autocorrela-
tion in the dataset [12] and to benefit memory computational
constraints. Another method that is commonly used to im-
prove the results of MCMC chains is the concept of “burn-
in”. When running an MCMC, some initial starting points
are better than others. Burn-in attempts to solve the problem
of a poor start point. Essentially, burn-in is used to remove
iterations that start in the tail of the equilibrium distribution.
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For this paper, the Markov Chains were not thinned and a
burn-in period was not used as the machine this work was
implemented on had sufficient memory and the iteration run
time was already quite long.

“Shiny Stan” does not include information about thin-
ning or burn-in, however it provides a number of useful fig-
ures that can help assess convergence. Trace plots are an
example of a tool that can be used to identify problem areas
with a model. For example, multimodality in a trace plot can
be identified by jumps between different distributions and re-
gions where the sampler reaches and has difficulty returning
to the main distribution in the trace plot can indicate wide
posterior tails [12].

Another metric is the MCSE (The Monte Carlo standard
error). It is an estimate of the error of the estimate for the
posterior mean based on the posterior standard deviation es-
timate and the number of effective samples.

MCSE(θ̄) =
s√
Ne f f

where θ is the posterior mean of the parameter, s is the esti-
mated posterior standard deviation and Ne f f is the effective
sample size. Because an MCMC is typically not indepen-
dent, the Monte Carlo standard error will often be higher than
if it was independent [12].

For the Hamiltonian Monte Carlo method implemented
specifically in Stan there are a couple of additional diag-
nostics. The three specific HMC diagnostics are: checks for
divergent transitions, checks for maximum tree-depth, and
information on the Bayesian fraction of missing information.
In general, stepsize and tree-depth are the two tuning param-
eters for adjusting the three diagnostic outputs. Stan tries
to find the optimal stepsize and tree-depth during warm up
but does not always find the best settings.

If Stan notifies that there are divergent transitions then
“the sampler is not drawing samples from the entire posterior
and inferences will be biased.” [12] Reducing the step-size
helps mitigate this however it also means that it will require
more steps to explore the space. Getting the “maximum tree
depth reached” warning means that more steps need to be
taken but are capped at the maximum. A larger tree depth
will help with model efficiency and faster space exploration.
Bayesian fraction of missing information can be understood
as – if you have a heavy tail distribution, you need large mo-
mentum to go to the tail, and a Gaussian momentum proposal
(which is common for HMC) is not enough momentum to get
you there.

Han Liu and Larry Wasserman wrote in their textbook
“Statistical Machine Learning” (2014) provided additional
guidelines on how to analyze trace plots. In particular, the
paper provides guidelines on how to specify the variance pa-
rameter for Gaussian models. Gaussian models with too low
variances tend to have acceptance rates that are too high and
models with too high variances tend to have acceptance rates
that are too low [13]. Gelman (1996) wrote that the ideal
acceptance rate should be around 0.25 [14].

5.2 Results

The County Health Rankings are presented as two pri-
mary health outcomes 1. The two health outcomes are length
of life and quality of life. Length of life (mortality) is mea-
sured by premature death and quality of life (morbidity) is
measured by the average number of poor physical health
days out of 30 days, the average number of poor mental
health days out of 30 days, low birth weight births and the
percentage of adults reporting poor or fair health. Mortal-
ity and morbidity are equally weighted in terms of the final
county ranking.

After fitting each of the hierarchical Bayesian models, I
extracted the posterior mean for each of the parameters and
predicted each of the elements that go into the health out-
comes. For mortality, each of the estimated values for prema-
ture death were ordered within each state and ranked. These
ranked values were then compared with the “true” ranks from
the County Health Rankings using the mean squared error
loss described 4.4.1. The mean squared error loss was quite
poor and ranged from 0 to approximately 10,000 depending
on the state (Figure 3). The District of Columbia had the
smallest mean squared error loss because there is only one
county there and therefore the predicted rank was 1 and the
true rank was 1.

Fig. 3: Mortality Mean Squared Error Loss By State – Model 1

For the second model (includes demographics), each of
the estimated values were estimated, ordered within each
state and ranked. These ranked values were then also com-
pared with the “true” ranks from the County Health Rankings
using the mean squared error loss described 4.4.1. The mean
squared error loss for this mortality score was poor (very
high) as well and ranged from 0 to approximately 10,000
depending on the state (Figure 4). Once again, the District of
Columbia had the smallest mean squared error loss.
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Fig. 4: Mortality Mean Squared Error Loss By State – Model 2

Comparing Figure 4 to Figure 3, there is no substantial
difference. Figure 5 show the relationship between the mean
squared error loss between Model 1 and Model 2 for mortal-
ity. The R2 value is 0.997 with the regression noting that the
relationship is significant with a p-value significantly smaller
than the standard α of 0.05. This implies that there is no sig-
nificant difference between the two models.

Fig. 5: Mortality Model Comparison

Similarly, the mean squared error follows a similar trend
to the two mortality models in the two morbidity models.
Figures for morbidity mean square error by state, see Figures
14 and 15 in the appendix. Figure 6 shows the correlation be-
tween the first morbidity model (with just county/state ran-
dom effects) and the second morbidity model (county/state
random effects and demographic fixed effects). In this fig-
ure, the correlation is nearly perfect, once again implying
that there is no significant difference between the two mor-
bidity models.

Fig. 6: Morbidity Model Comparison
Notice that in the past few figures, the mean squared er-

ror for some of the states is exceptionally large. A substantial
amount of the error can be accounted for by studying trace
plots, the posterior distribution, and the mean Metropolis ac-
ceptance values. For the analyses in this paper, some of the
difficulties arose from not having sufficient resources to find
“good” posterior estimates. Some of the Bayesian estimates
for health outcomes did fairly well. For example, Figure 7
shows the trace plot for the county random effect for poor
health percentage health outcome. The models implemented
here used 12 chains with 4000 iterations. No burn in or thin-
ning was done. The trace plot shows no signs of divergence
and shows that the MCMC is exploring the full space.

Fig. 7: MCMC trace plot of the estimate for the county random
effect of the percentage of adults who consider themselves to be in
poor or fair health (self-reported and age adjusted) over a seven year
period (2005-2011)

Figure 8 shows the posterior distribution for the county
random effect for poor health percentage health outcome.
The figure shows that the posterior distribution is likely uni-
modal and not skewed.

Fig. 8: Posterior distribution of the estimate for the county random
effect of the percentage of adults who consider themselves to be in
poor or fair health (self-reported and age adjusted) over a seven year
period (2005-2011)
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Figure 9 shows the mean Metropolis acceptance for the
county random effect for poor health percentage health out-
come. The figure shows that around the posterior mean, the
Metropolis acceptance is around 0.45.

Fig. 9: Mean Metropolis Acceptance of the estimate for the county
random effect of the percentage of adults who consider themselves
to be in poor or fair health (self-reported and age adjusted) over a
seven year period (2005-2011)

An example of a diverging model can be seen with the
poor physical days model. Figure 10 shows the trace plot
for the county random effect for poor physical days (model
1). Similarly, this model was implemented using 12 chains
with 4000 iterations and no burn in or thinning. The trace
plot shows substantial signs of divergence and shows that the
MCMC can not settle on a particular mean value.

Fig. 10: MCMC trace plot of the estimate for the county random
effect of the average number of poor physical health days self-
reported in the past 30 days

Figure 11 shows the posterior mean for the county ran-
dom effect for poor physical days. The figure shows that the
posterior distribution is likely multimodal and suggests that
the posterior mean may not be the best parameter estimate.

Fig. 11: Posterior distribution of the estimate for the county ran-
dom effect of the average number of poor physical health days self-
reported in the past 30 days

Figure 12 shows the mean Metropolis acceptance for
the county random effect for poor physical days. The fig-
ure shows that around the posterior mean, the Metropolis ac-
ceptance is all over the place with the red points indicating
divergence.

Fig. 12: Mean Metropolis Acceptance Rate of the estimate for the
county random effect of the average number of poor physical health
days self-reported in the past 30 days

Figure 13 shows a notable trend that the squared error
loss for the morbidity model that excludes demographics in-
creases when the number of counties within a state increase.
Texas has the highest squared error loss (9544.91) and has
the highest number of counties (254). This trend can also
be seen in the second morbidity model and the two mortality
models (Figures 16, 17, 18).

Fig. 13: Morbidity Model 1 MSE Loss and Total Number of Coun-
ties in a State in the County Health Rankings

6 Future Work
One area to explore further is alternative ranking meth-

ods. The paper “Loss Function Based Ranking in Two-Stage,
Hierarchical Models” [11] by R. Lin, et al. provides an ex-
cellent overview of how ranking using Bayesian hierarchical
models can be improved. The paper wrote that for effective
ranking, the loss function should consist of a comparison be-
tween estimated and true ranks. R. Lin, et al. showed that
this “produces optimal or near optimal performance” [11].
Future work for this paper could include an investigation into
additional loss functions (i.e. weighted mean squared error
loss, 100(1− γ)% loss, summed unit specific loss – ratio of
misclassifications, etc.)

The paper by Athens, et al. [2] estimated the parameters
in the hierarchical models using Linear Mixed-Effects Mod-
eling (lme4 in R – see example of linear mixed effect model
here [15]). This paper did not dive into frequentist methods
and largely focused on Bayesian techniques. Another area
to look into is comparing the frequentist methods and the
Bayesian methods implemented in this paper. It would be in-
teresting to quantify the differences in performance between
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the two statistical schools of thought. In particular, studying
the mean squared error loss differences and ranking accu-
racy compared to the “true” data source from the Wisconsin
County Health Rankings.

Another interesting area to look into is performing a spa-
tial analysis across all counties and ranking across the US.
The rankings are performed within states because states have
the power to allocate resources to their counties. A rank-
ing across the US is challenging due to the lower chance of
change within a county. However, investigating the rankings
across the US could point to larger clusters of “problem” ar-
eas (areas with worse rankings).

Finally, it is super important to extend this research by
looking at how different ranking methods rank the counties
within each state. It’s possible that distinct methods high-
light stark differences in either urbanization or demographic.
It would be fascinating to study the evolution of the rank-
ings over time across different ranking methods to highlight
public health growth areas.

7 Conclusions
The purpose of this paper was to estimate the County

Health Rankings using Bayesian hierarchical modeling to
provide a framework for quantifying the error in the es-
timates. The methods presented in this paper find that
Bayesian hierarchical modeling has the potential of satisfy-
ing that goal. The models for morbidity and mortality were
able to estimate the “correct” rankings for states with fewer
counties. Additionally, this paper implies that there is no
significant difference between the model that includes demo-
graphics as fixed effects and the model that simply uses state
and county level random effects.

Many of the models for the county health outcomes suf-
fered from divergence. Dedicating more time to hyperpa-
rameter tuning and more computational resources can lead
to better convergence and better posterior estimates. Bet-
ter posterior estimates could potentially also present more
substantial differences between models that include demo-
graphic fixed effects and models that do not. With more
resources, Bayesian hierarchical modeling can successfully
quantify error in the County Health Rankings.
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8 Appendix

The following two figures show the mean square error
loss for each state for both morbidity models. These figures
are included to show that the trend is common across all four
models.

Fig. 14: Morbidity Model 1 MSE Loss by State

Fig. 15: Morbidity Model 2 MSE Loss by State

The following three figures show the mean square error
loss with respect to the total number of counties. These fig-
ures are included to show that the trend is common across all
four models.

Fig. 16: Morbidity Model 2 MSE Loss and Total Number of Coun-
ties in a State in the County Health Rankings

Fig. 17: Mortality Model 1 MSE Loss and Total Number of Coun-
ties in a State in the County Health Rankings

Fig. 18: Mortality Model 2 MSE Loss and Total Number of Coun-
ties in a State in the County Health Rankings

The following two figures show the mean square error
loss with respect to the population of the states.
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Fig. 19: Morbidity Model 1 MSE Loss and Total County Popula-
tions

Fig. 20: Morbidity Model 1 MSE Loss and Total County Popula-
tions

Fig. 21: Mortality Model 1 MSE Loss and Total County Popula-
tions

Fig. 22: Mortality Model 2 MSE Loss and Total County Popula-
tions
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