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ABSTRACT
Social media platforms such as Twitter, Instagram, and Facebook

play a prominent role in our society since they can influence what

individuals are interested in and can inspire individuals to act in

certain ways. Since these platforms are prevalent in today’s society,

analyzing their impacts on important events such as COVID-19

can help society anticipate the results. This project uses Twitter

to study COVID-19. To do so, we utilized the Twitter API and a

dataset containing COVID-19 related key words. Topics explored

surround COVID-19 tweet sentiment and its relation to the number

of COVID-19 cases and deaths. We built a dashboard to show (near)

real-time metrics relating to these topics. We hope that our project

will not only be useful for studying COVID-19, but that it can also

be used in the future for other important events and can be applied

to other social media platforms.

CCS CONCEPTS
• Applied computing → Document analysis; • Computing
methodologies→Machine learning; •Computer systems or-
ganization→ Cloud computing.
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1 INTRODUCTION
For this project we investigated the relationship between the sen-

timent of COVID-19 related tweets and the number of COVID-19

cases and deaths. We built a dashboard showing real-time senti-

ment of COVID-19 related tweets and real-time COVID-19 cases

and deaths. The dashboard displays metrics such as the number of

tweets mentioning the keyword "corona" today, average COVID-19

sentiment today, the number of new COVID-19 cases today, the

number of new COVID-19 deaths today, and more. We also in-

vestigated whether the sentiment of COVID-19 related tweets is

correlated with the number of confirmed cases and/or deaths and

attempted to develop a predictive model.

This information could be useful in helping health departments

prepare for an increase in COVID-19 cases, which could be critical

in making sure people receive the correct care. Health departments

may also be able to tweet more positive sentiment and other in-

formation that could potentially change an individual’s attitude

towards COVID-19, masks, and the vaccine. Additionally, individu-

als could use the dashboard to understand whether current public

sentiment accurately reflects the actual cases and deaths. For exam-

ple, a user may perceive from social media that people are feeling

positive about reopening public spaces, but COVID-19 cases may

in fact be increasing.

The rest of this report is organized as follows. Related work is

outlined in Section 2. The data used is described in Section 3. The

methods used, including models and architecture, are described in

Section 4. Evaluation is discussed in Section 5. Finally, Section 6

gives an overview of changes since the project proposal, describes

opportunities for future work, and reflects on what we’ve learned.

Section 7 summarizes our conclusions.

2 RELATEDWORK
COVID-19 has had a massive global impact, and as such there are

many recent studies across a wide variety of topics related to social

media sentiment analysis of COVID-19. Some studies of particular

interest that helped to motivate our research questions are listed

below.

For this project, we are largely following the architecture laid

out in Lin (2020) [18]. The article details building a real time tweet

processing application using some of the big data tools described

in Section 4.5.

Sanders et al. (2020) [24] analyzed a database of more than one

million tweets from January-May 2020 to determine public senti-

ment toward wearing masks. Natural language processing, clus-

tering, and sentiment analysis techniques were used. The authors

conclude that the number of tweets related to masks increased

significantly, and find that negative sentimentality also increased.

O’Leary and Storey (2020) [20] developed a model using the

number of Google searches for the term "coronavirus", the number

of Twitter tweets including the word "coronavirus", and the number

ofWikipedia coronavirus page views that was an effective predictor

of COVID-19 cases and deaths in the U.S. They found different

lag times for the different platforms: Google predicted well 2-3

weeks in advance, Twitter predicted well 1-2 weeks in advance, and

Wikipedia predicted well 7 days in advance.

Qin et al. (2020) [21] analyzed social media search indexes for

symptoms related to COVID-19 such as dry cough, fever, and pneu-

monia from December 31, 2019, to February 9, 2020, to predict new

suspected cases of COVID-19 during that time. Methods used were

1



CSCI 6502, January – May 2021, Boulder, CO Angela Folz, Lucas Laughlin, Ksenia Lepikhina, and Julie Matthias

subset selection, forward selection, lasso regression, ridge regres-

sion, and elastic net. Subset selection was determined to have the

lowest estimation error and a moderate number of predictors.

Kaila et al. (2020) [15] analyzed tweets with #coronavirus. Senti-

ment analysis was performed using NRC sentiment dictionary to

find 8 different emotions and their corresponding valence. Topic

modelling using Latent Dirichlet Allocation was used for identify-

ing topics in tweets. The authors conclude that Twitter was effective

in spreading information related to the pandemic, with little misin-

formation, particularly when compared to other outbreaks such as

Ebola.

3 DATA
For this project, our group originally planned to utilize Twitter’s

API through approved developer accounts to stream public tweets.

However, after further research we decided to use a public dataset,

the Coronavirus (COVID-19) Tweets Dataset [16] [17], because of

the advantages that it offers. First, the limit for a standard Twitter

developer account is 500,000 tweets per month, while the COVID-19

Tweets Dataset has over 1 billion COVID-19-related tweets collected

since March 20, 2020, which allows us to analyze more data points.

Second, the COVID-19 Tweets Dataset includes a sentiment score

for each tweet, eliminating the need for us to implement an NLP

model to compute a sentiment score.

The COVID-19 Tweets Dataset uses around 90 keywords and

hashtags related to COVID-19, such as "coronavirus", "#coronavirus",

"covid19", "#covid19", "pandemic", "quarantine", "social distancing",

"wearamask", and "vaccine", to collect relevant tweets. For a full list

of current key words, see Figure 1. All of the tweets are in English,

which is an advantage over other COVID-19 tweet datasets because

we don’t have to filter out other languages.

Figure 1: Current Key Words

The sentiment score for each tweet in this dataset was calculated

using TextBlob’s Sentiment Analysis model. TextBlob is a Python

library for NLP. It provides part-of-speech tagging, noun phrase

extraction, sentiment analysis, etc.[7] This model defines sentiment

scores in the range [-1,+1]. A tweet has positive sentiment if its

score is in (0,+1], negative sentiment if its score is in [-1, 0), and

neutral sentiment if its score is equal to 0 [17].

In addition to Twitter data, we also needed COVID-19 data to

complete this analysis. We utilized the New York Times (NYT)

COVID-19 data [28], which contains the cumulative number of

COVID-19 cases and deaths in the U.S. from January 1, 2020, to

April 12, 2021, in order to compare to the average tweet sentiment.

Due to insufficient location data we were not able to restrict our

tweet dataset to those only in the United States. However, since

our tweets are all in English, we feel that the number of cases and

deaths in the U.S. will be representative enough for our analysis.

Limiting the tweet location or expanding the cases/deaths data to

all English-speaking countries is an opportunity for future work.

Since we used pre-curated datasets, we simulated a stream pro-

cess so data is pulled in over time as if it was coming directly

from Twitter and a real-time COVID-19 data source. For further

information see Section 4.5.

4 DESIGN AND IMPLEMENTATION
This section details how we used the data to provide a solution to

the proposed problem. The models built and the architecture used

are described.

4.1 Tweet Re-hydration
Through our data investigation, we found that Twitter’s Developer

terms do not allow actual tweets and their metadata to be published.

Instead "dehydrated" tweets that only contain unique tweet IDs are

published [26]. In order to access the tweets and themetadata for the

COVID-19 Tweets Dataset, we had to hydrate the set of tweets using

Twarc [29]. Twarc is an open source command line tool and Python

library developed by DocNow, "a tool and a community developed

around supporting the ethical collection, use, and preservation

of social media content" [4]. When hydrating a tweet ID using

Twarc, Twarc utilizes Twitter’s API to look up the unique tweet IDs

and return a JSON file containing the tweet metadata. The JSON

files contain extensive information such as tweet text content, user

name, user location, number or user followers/following, date/time,

retweet status, etc. (for a full list visit the web page here).

4.2 Sampling
As mentioned in Section 3 the COVID-19 Tweets Dataset [16] [17]

contains over 1 billion tweets (1,136,037,775) [16] [17]. For this

analysis, we sampled from 923,605,316 tweets from March 19, 2020

- January 13, 2021. We did not incorporate the entire dataset into

our analysis because of the space required on a local machine. A

tweet allows up to 280 characters. If we assume each tweet is the

max length, then re-hydrating all of the tweets would consume

approximately 260 gigabytes of space on a local machine. Creating

a stream with this amount of data would cost a significant amount

of money in AWS. As a result, we chose to sample approximately

3,700 tweets from each day between March 19, 2020 and January

13, 2021 (300 days). From these samples, we saved the tweet ID and

sentiment (from the dataset), text, location, keywords that appeared

in the text or in the quote tweeted text, date, followers count, and

following count. Of the 1,110,802 sampled tweets, 914,829 tweets

contained keywords in the plain text. The tweets that did not have

keywords in the main text (195,973 tweets) were quote tweets and

were excluded from this analysis.

4.3 Time Series Analysis
We hypothesized that there may be a correlation between COVID-

19 related tweet sentiment and COVID-19 cases and/or deaths.

For example, a more pessimistic public attitude towards COVID-

19 could be correlated with an increase in COVID-19 cases, or
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perhaps more positive COVID-19 sentiment (e.g. enthusiasm about

the vaccine) could be correlated with fewer COVID-19 cases. So we

attempted to develop a predictive model using tweet sentiment to

determine how many COVID-19 cases or deaths may occur during

a particular day in the future.

Exploratory data analysis (EDA) showed evidence that average

tweet sentiment is correlated with the number of cases and deaths

(see Figure 2). An additive decomposition of daily COVID-19 cases

results in an approximately weekly seasonality (see Figure 3). The

same is true for the number of daily COVID-19 deaths and the daily

average tweet sentiment. We implemented an Exponential Smooth-

ing (ETS) time series model to predict the number of COVID-19

cases using the daily average tweet sentiment as an exogenous vari-

able. The same was done for COVID-19 deaths. EDA was conducted

in Python, but the ETS models were implemented in R using the

es() function from the smooth package [27] because it has a ro-

bust implementation for exogenous variables. ETS was chosen over

other time series techniques such as ARIMA because our data is

seasonal and therefore nonstationary and ETS doesn’t require trans-

formations for nonstationary data, while many others do. However,

exploring other models is an opportunity for future work.

Figure 2: Daily average sentiment increases and decreases in
a similar pattern as the log of daily COVID-19 cases and the
log of daily deaths due to COVID-19.

Figure 3: Additive decomposition of daily COVID-19 cases
results in an approximately weekly seasonality.

First the daily cases data were split into training and testing sets,

where the training set consisted of all but the last 14 days of data

and the testing set consisted of the last 14 days of data. Then a

model was fit on the training data with a frequency of 7 using the

es() function, which selects the model with the lowest information

criterion. The model selected was ETSX(M,Md,M), meaning that

the error, trend, and seasonality were all multiplicative and the

trend was damped (see [14] for more information on ETS models).

This model was used to forecast the number of COVID-19 cases

for a two-week period. Visually, the forecast appears to perform

well, as shown in Figure 4. (It should be noted that our data did

not span a full year, which may have caused some time scale issues

in the model when setting the frequency. The x axis in Figure 4

has been manually set to reflect the appropriate time scale, but this

may have introduced some inaccuracy. Recreating the models with

data that span more than a year’s time will be necessary for future

work.) Comparing the forecast to the testing data results in a mean

absolute percentage error (MAPE) of 14.3% and a relative root mean

squared error (rRMSE) of 1.043%.

Figure 4: Two-week forecast of daily COVID-19 cases using
daily average tweet sentiment as an exogenous variable.

The same technique was also applied to just the COVID-19 cases

data (excluding the sentiment) to create a univariate model for

comparison. The model selected was ETS(M,Md,M). The forecast

was visually indistinguishable from the previous model and resulted

in a MAPE of 14.3% and an rRMSE of 1.046%. So we concluded that

including sentiment as an exogenous variable does not improve the

efficacy of the forecast for daily cases.

The above techniques were applied to the daily COVID-19 deaths

data with similar results. The model selected including sentiment

was ETSX(M,Md,M) and the model selected excluding sentiment

was ETS(M,Md,M). The model including sentiment resulted in a

MAPE of 17% and an rRMSE of 0.499, while the model without

sentiment resulted in a MAPE of 17% and an rRMSE of 0.5. Again,

both models performed fairly well, but including sentiment did not

significantly affect the performance.

These techniques were also applied to log-transformed cases and

deaths data with the following results:
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• Predict log of cases using sentiment as exogenous variable:

Model = ETSX(M,Ad,A), MAPE = 1.3%, rRMSE = 1.111

• Predict log of cases, univariate:Model = ETS(M,Md,A),MAPE

= 1.2%, rRMSE = 1.08

• Predict log of deaths using sentiment as exogenous variable:

Model = ETSX(A,Ad,A), MAPE = 2.5%, rRMSE = 0.508

• Predict log of deaths, univariate:Model = ETS(A,Ad,A),MAPE

= 2.5%, rRMSE = 0.507

The MAPE, which is scale-independent, shows that prediction

accuracy increased dramatically compared to the non-transformed

data, however including sentiment still had little to no effect.

We did not end up including predictions on the dashboard be-

cause including sentiment did not improve the models and we

felt that including just univariate predictive models would be less

relevant to the purpose of the dashboard. In addition, including

predictions would require using EMR in our architecture, which

was the original plan, but when we set up an EMR cluster we experi-

enced pricing issues. Including a predictive model on the dashboard

is an opportunity for future work.

4.4 Dashboard
To complete our analysis, we assumed that the sentiment provided

in the dataset was correct. Our main goal for our dashboard was

to create a convenient and easy way to track how social media

(Twitter) can influence COVID-19 cases and deaths. In order to

accomplish this, we included the following items on our dashboard:

• COVID-19 deaths in real-time over time

• Number of COVID-19 related tweets in real time

• Average tweet real-time sentiment

• Total COVID-19 cases in real-time

• Total COVID-19 deaths in real-time

• New COVID-19 cases in real-time

• New COVID-19 deaths in real-time

• Distribution of tweet sentiment in real-time

• Number tweets mentioning "corona" in real-time

Figure 5: Dashboard created

We ultimately decided on including these figures into our dash-

board because we thought that they would be the most helpful for

helping local and national governments address COVID-19 and

other events that could have a large impact on society. In particular,

we thought that seeing COVID-19 deaths over time updating in

real-time would be helpful in seeing how the pandemic is progress-

ing and if deaths are higher today than they were in the past. Next,

we thought that including the number of COVID-19 related tweets

in real-time would be helpful because it would show the size of

the sample from which statistics such as average tweet sentiment,

tweet sentiment distribution, and number of tweets mentioning

"corona" are being calculated. We also decided to include average

tweet sentiment and distribution of tweet sentiment in real-time

because although average tweet sentiment provides an idea of what

the sentiment is like for a given day, it can be skewed, so seeing the

actual distribution can be very helpful. As we streamed in the data,

we noticed that the sentiment for the tweets on a given day tended

to be slightly more positive than negative. This was surprising, as

we assumed that sentiment would tend to be negative when cases

were rapidly increasing. However, this information will be very

useful for healthcare officials since they will be able to see how

tweet sentiment for a given day impacts cases and deaths. Finally,

we included statistics such as total COVID-19 cases and deaths

in real-time and new COVID-19 cases and deaths in real-time so

that someone using this dashboard would be able to see the bigger

picture, i.e. how many cases/deaths have occurred so far and out of

that many cases/deaths howmany have occurred today. Overall, we

think that this dashboard is really helpful for government agencies

and could be easily modified to incorporate other statistics that

they think would be helpful.

4.5 Architecture
In order to accomplish the goals detailed above, we implemented

a scalable big data system. In particular, we used Python, SQL,

Javascript and AWS. Python was used for processing, prototyping,

and creating figures for our dashboard. It was also used for ex-

ploratory data analysis and time series analysis. Within Athena, we

used SQL (Athena uses Presto with ANSI SQL) to query the Twitter

and COVID-19 data. We then used serverless Javascript functions

to make calls to Athena-Express in order to access data for our

dashboard. Within AWS, we used five primary services: Kinesis, S3,

Athena, API gateway and Lambda. See Figure 6 for an overview of

the architecture.

Figure 6: Architecture
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Kinesis is Amazon Web Service’s stream processing tool that

"makes it easy to collect, process, and analyze real-time, streaming

data so [we] can get timely insights and react quickly to new infor-

mation" [30], such as incoming streaming tweets. Due to prohibitive

costs associated with the amount of tweets available, we simulated

streaming by using an existing data-set of COVID-19 related tweets

that will continuously send tweets to the Kinesis data stream. Ama-

zon S3 is the AWS storage service ("Simple Storage Service"). S3 can

be used "to store and protect any amount of data for a range of use

cases, such as data lakes, websites, mobile applications, backup and

restore, archive, enterprise applications, IoT devices, and big data

analytics" [10]. Finally, Amazon Athena is a query service used to

analyze data in Amazon S3 using standard SQL. Since Athena is

serverless, we did not have to manage an infrastructure. [13]

These services were all combined to form a clean data pipeline.

The streaming process is simulated using the rehydrated and sam-

pled Twitter streaming data (tweets and sentiment) and the COVID-

19 cases and COVID-19 deaths data. Pythons boto3 library is an

AWS SDK (software development kit) that is used to simulate the

streaming process. Within Python, we wrote a function that takes

in a dataframe (read from the CSV’s of the sampled data and NYT

COVID-19 data), a stream name, and a boto3 Kinesis client and

simulates a streaming process by sending data into a Kinesis data

stream. Within Kinesis, we developed three input streams titled

“twitter-beta-input" (data from the COVID-19 dataset), “twitter-beta-

input-tweets" (data from the sampled tweet dataset), and “twitter-

beta-output". We then created a couple of Kinesis Firehouse delivery

streams titled “covid_data_delivery_stream" (receives data from

“twitter-beta-input|) and “tweet_data_delivery_stream" (receives

data from “twitter-beta-input-tweets"). Both delivery streams pause

for 1 minute before sending data into S3. The delivery streams send

the data into two respective S3 buckets with prefixes (“input-covid"

and “error-covid" and “input-tweets" and “error-tweets"). Kinesis

then sends raw tweets to S3 where they are stored.

Our client end application was a web dashboard built in React

and deployed to GitHub pages. On page load, the site would query

an AWS API gateway proxy which itself pointed to a single Lambda

function. The proxy allowed routing of all calls through a single

base URL without needing to delineate each call through its own

API gateway route to its own lambda function. The lambda function

then made use of an internal router to apply the correct logic based

on the path appended to the base URL.

The Lambda function in turn made use of Athena-Express, a

NodeJS package used for making asynchronous AWS Athena calls

from JavaScript. AWS’ Lambda service allows for a server-less

deployment with concurrent scaling. Each additional call to the

API spins up its own Lambda instance which can run concurrently

avoiding the cost of compute when it is not required. This makes

the deployment highly scalable, especially at smaller scales where

a constant server is not needed.

To make our raw data within S3 queryable, we first needed to

setup a database with Athena and define the schema for two tables

(one for the tweet data and one for the COVID-19 data). When

defining the schema, we needed to specify the data types of each

of the incoming columns. The data type for each column was clear

except for the “date" column. Intuitively, it should have come in as

a date or date-time, yet due to formatting, it needed to be brought

in as a string. When writing queries, we needed to cast that column

to a date-time data type. By applying this schema to our raw data,

we could make SQL queries on our S3 database.

In order to determine which queries were necessary for our

dashboard, we prototyped the queries in the Athena console using

the newly defined databases and data tables. We wrote queries for

the count of total tweets on the current day, for the count of total

tweets with “corona" as a key word on the current day, for the

average sentiment on the current day, for the top ten key words

that day, for the cumulative number of COVID-19 cases/deaths as of

that day, for the number of COVID-19 cases/deaths on the current

day, and the total count of positive (0<), negative (<0) and neutral

(=0) sentiment. Once the queries were tested within the Athena

console, they were copied into the lambda function containing

Athena-Express.

Athena-Express’[1] SQL queries would store the query result in

a separate s3 folder as JSON objects. This triggered a return to the

original Athena-Express call within Lambda which then returned

the data back through the API gateway to the React dashboard

where it was displayed.

5 EVALUATION
5.1 Performance
Our three key performance indicators (KPIs) as outlined in our

proposal were latency, throughput and fault tolerance. AWS S3

has built-in fault tolerance through the use of data redundancy.

Each object is stored more than once in separate servers so that if

one server were to lose data or go down, the network would still

maintain that data.

The potential throughput of this system is limited by the Kinesis

data streams. Currently our system is running with 2 data streams

at one shard each for a total throughput of 1 MB/s. Each data stream

has the capacity to run 5,000 shards for a total throughput of 5 GB/s

which far outpaces streaming every single COVID-19 related tweet

in a one month period. Our average tweet size was 0.000000291 GBs

and the average number of COVID-19 related tweets in a month

is approximately 80,600,000. This calculates to about 23.4546 GB

of data a month to stream all possible COVID-19 tweets. This is

approximately 0.00000876 GB/s to stream every tweet into our

system not accounting for variation in tweet rates at different times.

This is well within Kinesis data streams data streaming throughput.

Latency was well within the bounds of acceptable for our appli-

cation as well. AWS Cloudwatch recorded the Kinesis data streams

latency as 11 milliseconds per tweet stream record and 40 seconds

per COVID-19 daily data record. At this latency for the aforemen-

tioned average tweets per month, it still only takes 886,600 seconds

to upload all tweets within a month which is significantly lower

that the total seconds in a month, meaning our data would never

outpace our latency. Our Athena SQL queries took on average 2.3

seconds to complete, allowing our client side application to access

the data very quickly.

Our preliminary data pipeline was focused on passing data

through and storing all raw data from which SQL queries could be

made to fetch required. A stronger and less resource-intensive de-

sign would be to only store raw data temporarily and feed that into

a data processing/analyzing layer such as Apache Spark running

5
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on an AWS EMR instance. This would then store only relevant data

in S3 and avoid excess storage costs. This would also improve client

latency as the SQL queries would not need to run over the entirety

of the raw data. This data processing layer would also allow us

to run more complex models in real time such as our time series

analysis or a proposed sentiment analysis network.

This was our original design but due to both cost and time con-

straints we could not finish this element of our pipeline.

5.2 Pricing
To calculate the pricing for a larger scale project, we assumed

that there would be 80,600,000 tweets per month based on our

dataset’s reported 2,600,000 tweets per day average [16] [17]. We

also assumed that the monthly cost would be based on 31 days. In

addition, we found the following prices according to Amazon [10]

[30]:

• Kinesis Data Stream:

For 1 Shard: 1 MB/sec=0.06 GB/min=2678.4 GB/month

For 1 shard: $0.015 per hr or $11.16 per month

• Kinesis Firehose:

500 TB per month for $0.029 per GB

Next 1.5 PB per month for $0.025 per GB

Over 3 PB per month for $ 0.02 per GB

• S3

50 TB per month for $0.023 per GB

Next 450 TB per month for $0.022 per GB

Over 500 TB per month for $0.011 GB

$0.005 per 1000 PUT requests

• Tweets

2,600,000 tweets a day at .000290909 MB = .000000290909

GB

23.4472654 GB per month of tweet data

Using the data above, we derived the following equation for our

price of processing every COVID-19 related tweet in a month:

𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐺𝐵 = (2 ∗ 10.95) + (0.029 + 0.023) ∗ 23.4472654+
(80600000/1000) ∗ 0.005

This resulted in about $426 in costs each month.

If we were to implement our dashboard at scale, we would pro-

cess approximately 1.55 ∗ 1010 tweets per month, which would be

about 4510.5 GB. Using similar logic as above, we determined that

in this case the monthly cost would be approximately $81,923.

6 DISCUSSION
6.1 Preliminary Results
Before we streamed data into our dashboard, we conducted ex-

ploratory data analysis. While conducting exploratory data analysis

we found that that the total number of COVID-19 related tweets has

steadily increased from the start of the pandemic (this is attributed

to the dataset tracking more keywords over time) which can be

seen in Section 7.

As mentioned above, we sampled 914,829 tweets that included

keywords. Of these tweets, 623,920 tweets (roughly 68%) had some-

thing in the "location" field. However, some of these did not contain

Figure 7: Tweet growth over time [17]

an appropriate or correct location which strongly influence us to

not include location. We also discovered that approximately 4%

contain the key words "vaccine" and/or "mask". The limited num-

ber of tweets that contain key words such as masks and vaccine

convinced us to not include this in our analysis. However, these

could be included in the dashboard in the future once more tweets

are streamed that contain these words.

We also decided to investigate things like what was the average

daily sentiment, top ten number of key words, number of cases

over time, and number of deaths over time. As mentioned above,

keywords were added to the dataset over time, so it is not surprising

that the histogram for number of key words was heavily skewed.

We found that the top five key words in the dataset were: covid,

corona, covid-19, pandemic, and coronavirus. As shown in Section

8, "covid" has the highest frequency and occurs more than twice as

many times as "corona."

Figure 8: Top 10 Number of Key Words

Although we didn’t conduct an analysis about masks, we de-

cided to look at mask key words to see if there were any words

that occurred more frequently than others. We found that "PPE"

occurred the most and "wear a mask" never occurred. It would be

interesting to look at 2021 YTD data to see if this has changed and

more people are tweeting "wear a mask" instead of "PPE."

The next item that we explored using the Twitter dataset was

the average daily sentiment. Figure 10 shows a scatterplot of daily

average sentiment over time. Based on this plot it appears, that

almost all of the dates had an average daily positive sentiment. The

most negative sentiment occurred in the middle of July. Since our

Twitter data was only limited to English tweets and not by location,

we cannot say what was happening during that time that could

have caused this drop because COVID-19 was being addressed

6
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Figure 9: Top Key Words Related to Masks

differently throughout the world at this time. Not surprising (given

Figure 10), the most common tweet sentiment was 0, i.e. neutral.

Figure 10: Average Daily Sentiment

Our data saw an increase in cases and deaths from March 19th,

2020 to January 13th, 2021. As of March 19th, the NYT had recorded

one case and zero deaths. By January 13th, there was 23,133,938

COVID-19 cases and 384,824 COVID-19 deaths.

Figure 11: US Cases and Deaths Over Time

6.2 Changes
This section contains an overview of the major changes since the

project proposal.

6.2.1 Objectives. Originally, we planned to analyze each tweet’s

location, content, and date/time to help determine correlation be-

tween cases and mask/vaccine sentiment in a certain location. How-

ever, with more research we learned that only 1-2% of tweets are

geo-tagged [8]. Alternative methods for determining tweet location

exist but didn’t appear to be good options for this project. Parsing

keywords for mentions of location is a possible alternative method,

but this is not very accurate [8]. It’s also possible to pull location

from user profiles to gather location information, but many users ei-

ther leave the field empty or don’t include a valid location (the field

is a free-form character field) [5]. Since the tweets in our dataset

did not include sufficient location information, we analyzed general

trends of sentiment in relation to cases over time, independent of

location.

6.2.2 Data. We used a public COVID-19 related tweet dataset

instead of pulling directly from Twitter. This also allowed us to use

the sentiment score from the dataset instead of implementing our

own sentiment analysis model. (See Section 3.)

6.2.3 Models. We also changed from a spatially oriented model to

a temporal model as there was not enough location data, and for

our statistical analysis we looked at overall COVID-19 sentiment

rather than specific mask and/or vaccine sentiment as there was

an insufficient percentage of tweets relating to these topics.

6.2.4 Sentiment. Our original plan was to use a publicly available

pre-trained languagemodel to determine tweet sentiment. However,

the COVID-19 Tweets Dataset includes a sentiment score for each

tweet in the dataset (see Section 3 for more details). We’ve chosen to

use this instead of training our own model because it simplifies our

project. However, if we were to implement this project at scale and

stream tweets directly from Twitter we would need to implement

our own sentiment model. The remainder of this section describes

our original plan for doing so, which could be relevant for future

work.

We originally planned to use a publicly available pre-trained

language model such as BERT or GPT which is made available

publicly by Tensorflow and Pytorch. Both pre-training methods

use multilayered transformer decoder and encoder architecture to

build vector representations of the words in a corpus taking into

account the underlying words and their contextual meaning. We

planned to pass tweets through these pre-trained models and pass

the final transformer block’s activation into further layers.

The original plan was to determine a tweet’s sentiment in coun-

ties/states in relation to masks, COVID-19, and the COVID-19 vac-

cine. In particular, we intended to use a common technique in

natural language processing (NLP) called sentiment analysis. In

order to do so, we needed some form of pre-classified data such as a

list of classified (sentiment) words from SentiWordNet in the NLTK

library in Python as well as the pre-trained GPT language model.

This dictionary would have classified a set number of words as

positive or negative. These dictionaries could then be used to deter-

mine the sentiment of a sentence by determining the probability of

a word having positive or negative sentiment and then combining

the probabilities of positive and the probabilities of negative and

choosing the maximum.

6.2.5 Architecture. AWS has cost our team money, so we waited

until April (the start of a newmonth resets the free usage allowance)

to process data. Rather than look at all the tweets we sampled

approximately 1 million tweets as a proof of concept, since all of

the data wouldn’t fit on our machines and using AWS to stream

all of the data would cost a lot of money. We simulated streaming
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using Kinesis data stream and Kinesis delivery streamwith Python’s

boto3 library to create a prototype that would function similarly

to pulling tweets directly from Twitter. (See Section 4.5.)

We chose to exclude EMR from our architecture as we did not

have the resources (financial, mostly) to use this service. We in-

tended to implement our own sentiment analysis model and to

include our our time series analysis work on our dashboard. In

the future with further resources, we hope to include these on our

React dashboard.

6.3 Future Work
While this project effectively implemented a live dashboard, there

are a number of areas to explore further and implement. One area

that we did not have sufficient time or budget for is including the

time series predictions on the COVID-19 Twitter Tracker dashboard.

Given additional resources, including the time series analysis per-

formed in Python on this paper would be desirable. This can be

accomplished through PySpark in AWS EMR.

If a time series model is included in the future, opportunities

exist for making the model more robust, including verifying the

accuracy of the forecasts using cross-validation and exploring other

time series models such as SARIMAX (Seasonal Autoregressive

Integrated Moving Average Exogenous model).

Additionally, it would be interesting to implement/recreate the

machine learning/ natural language processing model of sentiment

analysis included in the tweet dataset. The dataset by R. Lamsal[17]

(where we retrieved our Twitter data) included sentiment for each

tweet, however the accompanying paper did not include an in-

depth explanation of how the sentiment was derived. Alternatively,

we could create our own sentiment model, as described in Section

6.2.4.

Another area to extend this work is by including some spatial

analysis. A small subset of the tweets in the dataset contained real

locations (i.e. were geotagged). If we chose to stream data directly

from Twitter’s API, we could collect a larger amount of tweets that

included geo information. Extending the work explained in this

paper into the spatial realm could help track sentiment by location

and COVID-19 spread throughout the United States. Although our

temporal predictive models did not improve when sentiment was

included as a variable, we hypothesize that there could still be a

spatial correlation between sentiment and COVID-19 cases.

This project can also be extended to a global scale. Currently,

both the COVID-19 dataset and the subsetted tweet dataset con-

tain United States data strictly. Not only can this data be broken

into a more granular dataset (e.g. looking at both datasets on a

state/county level) but it can also be extended globally.

These more complex models would need to be implemented in a

data processing layer such as spark on an AWS EMR instance as

mentioned in the previous evaluation section.

6.4 Reflection
Overall this project presented our team with an excellent opportu-

nity to implement a prototype for big data architecture from scratch.

We were able to successfully implement a scalable streaming big

data system using a number of AWS products. We found that sim-

ulating streaming data is quite simple and that connecting each

component within AWS is where the challenge of our architecture

lies.

We were also able to successfully create a React dashboard that

updated whenever new data was received. This was done by con-

necting an API Gateway to a React Dashboard. This Dashboard

allowed us to display and analyzed results from big data. Although

our dashboard only incorporated statistics for COVID-19 cases,

deaths, and tweet sentiment, future users will be able to adjust the

dashboard to include additional statistics/measures that better fit

their needs. We also learned that big data has its own nuances that

need to be addressed before analyzing, i.e. messy data that is hard

to analyze.

Finally, we learned that there are limited resources available

within a certain price point. This limitation forced us to design our

project around this price point. However, we did conduct research

that would allow us to implement this project using a larger budget.

For example, we learned about EMR’s capabilities and how this

would allow us to implement a machine learning model into our

dashboard. We also learned how much money we would need to

spend to be able to implement this project on a larger scale which

will be important for future big data projects.

7 CONCLUSION
In conclusion, the COVID-19 Twitter Tracker dashboard is useful

for real time analysis of COVID-19. It helps individuals understand

the current COVID-19 climate, conveniently displays relevant in-

formation for public health officials, and can be used to analyze

information pertaining to COVID-19. Our selected architecture is

sufficient for our proposed problem. We effectively created a pro-

totype for a real time COVID-19 dashboard. Additionally, in this

paper we determined that sentiment is not a useful predictor for

the predictive model for COVID-19 cases and deaths, but univariate

time series models for cases and deaths perform well.
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Kinesis data stream simulation using python. The client side
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down due to increasing costs) and she setup one of the de-
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Lucas then wrote a Python script that simulated a streaming

process. She then built a Kinesis input data stream and de-

livery stream for each data set and streamed that data into

s3. She then worked on connecting Athena to S3, created

a schema and made the data queryable within the Athena

console.
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this would be sufficient for our project needs. She created a

Twitter developer account, learned how to rehydrate tweets,

and rehydrated some data. Although Spark was not used in

this project, she researched how to set it up and set it up. Julie

found COVID-19 datasets from the CDPHE and NYT that

contained daily data about COVID-19 cases and deaths. We

only used the NYT dataset for this project. Julie conducted

exploratory data analysis on the COVID-19 NYT dataset and

the Twitter dataset. Julie researched SQL queries to use in

Athena, researched AWS, and found latency statistics that

AWS provided. She also participated in investigating mod-

ifying the dashboard template. Julie also confirmed Lucas’

pricing calculations.

• All four authors contributed to writing the reports and cre-

ating and delivering the presentations.

Github
Here is the link to the Github where our dashboard can be viewed:

https://github.com/LucasLaughlin/covid-dashboard
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