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1 Background

The spread of influenza is complex. The in-
fectious disease is known to mutate seasonally
and within a single flu season making it chal-
lenging to study. Many methodologies[1][2][3]
have been proposed to model the spread using
different variations of the SIRS model. For
example, Danon et. al. [1] use SIRS net-
work models to track the spread of influenza
while Cazelles as well as Yang use assimila-
tion methodologies to determine the param-
eters of the SIRS model.

Epidemiology is a complex field which can
be challenging to study with sparse datasets.
In the absence of complete data, data assim-
ilation methods provide a framework to re-
construct time dynamic processes which al-
low for an epidemic to be described. Simply
by applying the methodologies to a stochastic
model, it is possible to reconstruct complex
epidemics over certain periods of time.

2 Summary

The goal of this paper is to learn how data
assimilation methodologies can be applied to
parameter estimation problems in particular
for an SIRS dynamic model. This paper
primarily studied the methods suggested in
Cazelles et. al. [2] and chose to focus on the
MCMC/data assimilation portion. Cazelles
implements the Extended Kalman Filter in
order to estimate the likelihood of the SIRS
model parameters and this paper aims to es-
timate parameters for the SIRS model using
the MCMC to converge to the most likely pa-
rameters using the likelihood. The likelihood
in this paper will be found using the ETKF
(Ensemble Transform Kalman Filter).

The purpose of this study is to learn
about parameter estimation with Markov
chain Monte Carlo and how data assimila-
tion can be used to estimate a likelihood for

the algorithm. This paper will implement a
”toy” model by simulating an SIRS model
with known parameters and try to estimate
the true parameters using the aforementioned
MCMC/ETKF. It will then try to implement
the same algorithm on a selection of the CDC
influenza dataset.

A successful implementation would allow
for accurate predictions of peaks in the flu
season as well as provide reasonable estimates
for how many people would be affected by an
epidemic. This would inform public health
policy and individual behavior.

3 Introduction

To begin, this paper would like to give a
brief introduction to the SIRS model it chose
to study. There are multiple different SIRS
models as there is no correct model. The
SIRS model is a model that describes the
movement over time from the susceptible
class of people to infected, then recovered and
back to susceptible. The reason for choos-
ing SIRS instead of SIR or SI (etc.) for this
paper is because is cyclical seasonally. This
model theoretically assumes a constant pop-
ulation meaning that the total population is
the sum of the three categories. The SIRS
set up I chose to use follows the following dy-
namic system:

dS

dt
= µ(N − S)− β(t)SI

N
+ αR

dI

dt
=
β(t)SI

N
− (γ + µ)I

dR

dt
= γI − (α + µ)R

β(t) = β0

(
1 + β1sin

(
2πt

365
− 0.4π

))
In the system of differential equations above,
S, I and R are state variables where S is the
number of susceptible people, I is the number
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of infected and R is the number of recovered.
N is the constant population. The parame-
ters that this paper tries to estimate are µ,
β0, β1, α and γ. Here, the β(t) is a time
varying parameter that represents the trans-
mission rate. It is sinusoidal because it takes
into account the fact that the flu may increase
in severity over time and that people may be
more susceptible to infection during the peak
flu season due to weaker immune systems. β0
and β1 are parameters that need to be esti-
mated for the transmission rate. µ represents
the mortality rate which is a measure of the
number of deaths in a particular population.
α is the average duration of immunity and γ
is the recovery rate.

The figure above is a simple visualiza-
tion of the dynamic system where the dark
turquoise line is the number of susceptible
people, the cyan line is the number of infected
people and the black line is the number of re-
covered people.

4 Methods

As mentioned in earlier sections this pa-
per discusses a method to estimate param-
eters using a combination of the MCMC and
ETKF data assimilation. The following para-
graphs will first detail the broad MCMC for
parameter estimation and then explain how
the Ensemble Transform Kalman Filter esti-
mates the likelihood.

4.1 MCMC

The pseudo code for the MCMC/ETKF is as
follows:

1: function MCMC(y, S, I, R)
2: chain[0, 0]← U(b0min, b0max)
3: chain[0, 1]← U(b1min, b1max)
4: chain[0, 2]← U(mmin,mmax)
5: chain[0, 3]← U(amin, amax)
6: chain[0, 4]← U(gmin, gmax)
7: for i ∈ 1000 do
8: L←findLikelihood(y, chain[i])
9: chain[i+ 1]← chain[i] + ε

10: if L/Lprev < U(0, 1) then
11: chain[i+ 1]← chain[i]
12: end if
13: end for
14: return chain . chain of parameters
15: end function

Markov chain Monte Carlo is an algo-
rithm for sampling from a probability dis-
tribution. In particular, this paper uses a
Metropolis-Hastings random walk. This algo-
rithm is used when directly sampling from a
distribution is challenging and is most useful
when the distribution is multi-dimensional.
Metropolis-Hastings was selected as the tool
for the SIRS model because there are 5 pa-
rameters that need to be estimated meaning
that the distribution will be 5 dimensional.

For this project, I began by initially draw-
ing each parameter from uniform distribu-
tions of varying widths. With the parame-
ter guesses, I found the likelihood given the
parameters and began to cycle through the
MCMC. This entailed adding some amount
of noise (some perturbation) to my previous
parameter estimates and then verifying that
the new parameter estimates did not leave a
certain boundary. The reason for adding the
boundary condition is because none of the
parameters could be negative for the SIRS
model. If the new parameter estimates (the
proposal) wander outside of the boundary,
then we reject the proposal and keep the old
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parameter estimates. Otherwise, if the pro-
posal is still within the bounds, we continue
to calculate the likelihood given the proposal.
Then, comparing the ratio of the new like-
lihood over the old likelihood to a random
uniform from 0 to 1, we determine whether
or not to keep the proposal. If the ratio
is greater than the random uniform value,
meaning that the proposed parameter esti-
mates are more likely to be closer to the true
parameters, we accept the proposal. Other-
wise, we reject the proposal and keep the pre-
vious parameter estimates (because the old
values were more likely). This MCMC cy-
cle repeats until a fixed amount of iterations
have completed (for example, 1000 iterations)
or until the chains appear to have remained
stable for a fixed period of time (for example,
200 iterations). In this paper, I chose to use
a fixed 1000 iterations.

Some MCMC best practices are determin-
ing whether there was a burn in period, thin-
ning the chains to reduce autocorrelation and
verifying that the chains do in fact appear to
converge to correct parameter estimates us-
ing convergence diagnostics. Typically before
studying the distribution of the estimated pa-
rameters by studying the resulting chain, it
is recommended to inspect the chain to see
if there is a period of time at the begin-
ning where the chain appears to be wander-
ing around a bit more and remove those sec-
tions of the chain. This prevents the distribu-
tion of the parameters from being improperly
skewed. As for thinning, the primary goal
is to reduce autocorrelation. The MCMC’s
resulting samples are intrinsically correlated
because each sample is drawn using the pre-
vious sample. With Metropolis-Hastings, we
can control autocorrelation slightly by ad-
justing the variance of the proposal distribu-
tion however the underlying issue is not elim-
inated. The best way to reduce autocorrela-
tion for the MCMC is to increase the amount
of lag between samples because typically as

lag increases, autocorrelation decreases. The
process of removing samples to reduce auto-
correlation is often called thinning. The final
best practice I will discuss here is the ver-
ification of convergence. There are number
of metrics that can be used to do so how-
ever the primary one used in this paper is the
Gelman-Rubin statistic [4]. The diagnostic
analyzes convergence by studying the differ-
ence between multiple Markov chains. Con-
vergence is evaluated by measuring the be-
tween chain and within chain variances for
each estimated parameter. If the differences
are large, then the chains likely do not con-
verge. If the statistic is close to 1, the chains
have most likely converged.

4.2 ETKF

Finally for this section, I will describe the En-
semble Transform Kalman Filter algorithm
and how it is used to find the likelihood given
parameter estimates. The ETKF is an En-
semble Square Root Filter. The ETKF differs
from the EnKF because the EnKF maintains
the BLUE (Best Linear Unbiased Estima-
tor)/ Kalman Filter update for the posterior
covariance only in the long run. The ETKF
generates a posterior mean and a posterior
ensemble that exactly satisfy the BLUE/KF
formulas:

µj+1 = µj+1|j +Kj+1(yj+1 −Hj+1µj+1|j)

Cj+1 = (I −Kj+1Hj+1)Bj+1

When the ETKF was originally suggested [5],
the posterior covariance was smaller than it
should be and the posterior mean was incor-
rect as well because the perturbation matrix
was not a true perturbation matrix (the sum
of the columns was not exactly zero). [6] The
original paper required the use of a square
root matrix which is considered somewhat
unnatural. The new paper [7] which elimi-
nates the use of square root matrices is now
considered the “correct” ETKF algorithm.
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The algorithm for the ETKF applied to
the SIRS model is as follows. We begin by
creating an ensemble matrix with dimensions
3 × N . The ensemble matrix has 3 rows be-
cause the SIRS model has 3 state variables
(S, I, R) and has N rows because we want
to create an ensemble matrix with N ensem-
ble members. The first row (S) was created
by drawing N samples from a random normal
with mean Sobs and variance Iobs. The second
row (I) was created by subtracting the first
row from the population. The third row (R)
was set to zeros.

Next, we begin assimilating and forecast-
ing using the ETKF algorithm. We cy-
cle for each observation so our loop is as
long as the number of observations that we
have. Within each cycle, we find the en-
semble mean, construct a perturbation ma-
trix A (ensemble member minus the ensemble
mean), update the ensemble mean to find the
posterior mean and update the perturbation
matrix to find the posterior perturbation ma-
trix. Then finally, for two-thirds of the obser-
vations, we assimilate by updating the ensem-
ble by adding the updated mean to

√
N − 1

times the updated perturbation matrix. Be-
cause in the SIRS model, every state variable
is strictly positive, I needed to add a check
for negative numbers in the updated ensem-
ble matrix. If anything was negative, then I
shifted the negative values up to a random
uniform between 0 and 0.1 (I will discuss the
effects of this later in the paper). Then for
the two-thirds of the observations that were
assimilated and for the one-third of observa-
tions that were not assimilated, we forecast
using the ensemble in the SIRS model (with
the proposed parameters).

Finally, after we finish updating our en-
semble, we are ready to calculate the like-
lihood. Here, we choose to use the log-
likelihood as the output from the likelihood

was quite small. We do so by:

L =
1

N

N∑
i=1

e
∑d

j=2d/3−
1
2

(
obs[j]−i[1]√

R

)2
` = log(L)

where N is the number of ensemble members,
d is the number of observations, i[1] selects
the ensemble member corresponding to the
number of infected people and R is the ob-
servation variance. This log-likelihood is then
used to assess whether the proposed param-
eters should be kept. Because I chose to use
the log-likelihood, the MCMC Metropolis-
Hastings acceptance criteria changes from the
ratio of logs to the difference between logs.

5 Results

The methodologies discussed in the previous
section were applied to two different sets of
data. The first was a simple “toy” model and
the second dataset was death data from the
CDC from 2010-2011 [8].

5.1 Toy Model

To implement the MCMC/ETKF on the toy
model, I needed to create the “true” data. To
do so, I set the parameters for the SIRS model
using the values specified in “Accounting for
non-stationarity in epidemiology by embed-
ding time-varying parameters in stochastic
models” [2] and generated the true values of
S, I and R over time. I generated 365 values
for each state variable. S was initialized at
1000, I was initialized at 3 and R at 0.

The observations for the toy model were
created from the number of infected people.
In particular, the observations were created
by adding some perturbations to each term
in the list of true infected values. I then ran
the MCMC/ETKF algorithm on the observa-
tions to try to estimate the parameters for the
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SIRS model. The goal of this model was to
compare the true preset parameters to the pa-
rameters that the MCMC/ETKF estimated.
The following are the chains of the parame-
ters for 1000 iterations of the MCMC. This
model needed to be run multiple times until
our chain was accepting the proposal approx-
imately 25% of the time.

For the toy model, my initial guesses for
the parameter in the MCMC were:

• β0 ∼ Uniform(0, 1)

• β1 ∼ Uniform(0, 1)

• µ ∼ Uniform(0, 0.0003)

• α ∼ Uniform(0, 0.0015)

• γ ∼ Uniform(0, 0.1)

As we can see in the chains above, none
of the chains appear to have a burn in pe-
riod with the exception of β0. I chose not to
remove the burn in period because the chain
was short (1000) and the majority of the pa-
rameters did not seem to have one.

The figure above is of the autocorrelation
between chains. The autocorrelation plot
helps determine which thinning parameter
should be selected. For the toy model, I chose
not to worry about thinning because the esti-
mated parameters appeared to be fairly close
to the true parameters already. If the true
parameters were not known, then the auto-
correlation would matter more.

The Gelman-Rubin [4] statistic for this
chain of parameters is 0.89. Because a statis-
tic close to one is considered convergent, we
can make the argument that this chain does
converge.

The following figure is the estimated dis-
tribution of the parameters.

As we can see, the distributions do not ap-
pear to be particularly unimodal.
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β0 β1 µ

True 0.65 0.4 5.48e-5
Post. Mean 0.468 0.469 4.54e-5

MAP 0.038 0.732 1.48e-5

α γ

True 0.00039 0.07143
Post. Mean 0.00075 0.04741

MAP 0.00148 0.08296

The tables above compare the true param-
eter values to two different estimates. The
MAP (maximum a posteriori) takes the mode
of each posterior distribution and the pos-
terior mean takes the mean of each poste-
rior distribution. As we can see, the MAP
appears to do a worse job than the poste-
rior mean in this case. This is likely because
the parameters have multiple modes and the
chain does not explore the whole parameter
space. The MAP appears to do super poorly
on β0 and the primary reason for that is likely
due to the fact that the burn in period was
not removed.

To compare the true number of infected to
the estimated, we can run the ETKF with the
estimated parameters and plot the estimates:

In the figure above, the turquoise points are
the observations, the grey line is the estimate
using the MAP of the parameters and the
black line is the estimate using the posterior
mean estimates of the parameters. While the
MAP does a fairly good job at estimating the
curve, the posterior mean does even better.

Because the posterior mean parameter esti-
mates did not match up exactly with the true
parameters but the estimated number of in-
fected people matches up fairly well, it’s pos-
sible that there is no “best” set of parameters
for the SIRS model.

5.2 CDC Death Data

Moving to a real dataset, I chose to use CDC
death data from the 2010-2011 flu season in
Colorado. Because the number of deaths does
not necessarily correspond 1 to 1 with the
number of infected people, I needed to ex-
trapolate to estimate the number of infected
people. I accomplished that by multiplying
the quantity of deceased by 21000/(37∗1000)
where 21000/37 represents the ratio of num-
ber of infected to number of deceased in the
2010-2011 flu season [9] and the value is di-
vided by 1000 to scale the data. I also re-
trieved the population of Colorado in 2010
and 2011 and averaged that, subtracted the
number of infected people, and divided by
1000 to get the scaled number of suscepti-
ble. The number of recovered people was set
to zero again.

Now, similar to the Toy model, I ran this
data through the MCMC/ETKF algorithm
to estimate the parameters for the model. I
ran it for 1000 MCMC iterations and found
the following chains:
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For the model with death data, the MCMC
initial guesses were:

• β0 ∼ Uniform(0, 5)

• β1 ∼ Uniform(0, 5)

• µ ∼ Uniform(0, 0.01)

• α ∼ Uniform(0, 0.1)

• γ ∼ Uniform(0, 5)

Like to toy model, this model needed to be
run multiple times until our chain was ac-
cepting the proposal approximately 25% of
the time. Notice that these initial guesses
are coming from a wider uniform distribution.
The reason for this is because the true param-
eters are unknown and thus a wider initial
guess is better. I vaguely tried to initialize
the parameters around the parameters men-
tioned in Cazelles et. al. however those were
the best parameters for a different dataset
which lead me to specifying a wider initial
distribution.

After finding a thinning lag of 10, the au-
tocorrelation plot looks much better:

The lower autocorrelation, the higher effi-
ciency we have in the chain and the better
our estimates are.

The Gelman-Rubin statistic for the chain
of parameters is closer to 0.88 meaning that
the chains converge slightly more poorly than

the chains for the toy model. However, 0.88
is still quite close to 1.0 meaning that chain
does converge.

The following figure is the estimated dis-
tribution of the parameters derived from the
chains after thinning:

Once again, by observing the plot above we
can’t particularly see a single value that the
distribution seems to be centered at. This im-
plies that the posterior distributions are likely
quite wide. In the case of the deaths data, we
have a wide prior and a wide posterior distri-
bution.

The parameter estimates that we can use
to plot our estimated number of infected peo-
ple are the MAP and the posterior distribu-
tion:

β0 β1 µ

Post. Mean 3.33 2.69 0.0013
MAP 4.95 0.611 0.0008

α γ

Post. Mean 0.088 2.76
MAP 0.076 0.38

The majority of the estimates (β0, µ, α) ap-
pear to be of the same magnitude between the
MAP and the posterior mean. However, β1
and γ appear to be quite a bit smaller in the
MAP than the posterior mean. In the case
of the death data, it is likely that the MAP
would be the better estimate because the pa-
rameters appear to have multiple modes in
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which case the posterior mean is typically a
poor estimate.

Once again, I ran the ETKF with the
estimated parameters (MAP and posterior
mean) and plotted the results to compare
them with the true data:

Like the toy model, the black line is the es-
timate using the MAP parameter estimates,
the grey line is using the posterior mean, and
the turquoise points are the observations (in
this case, simply the extrapolated number of
infected people).

Remember in the toy model, the poste-
rior mean was able to find the true param-
eters slightly better than the MAP. When
using real data (at least in this case), the
MAP appears to find the correct number of
infected people better. It’s interesting be-
cause the MAP and the posterior mean ap-
pear to do equally well at the beginning. Ar-
guably, the mean almost does better than the
mode. About halfway through the flu season,
the MAP estimate appears to start clinging
to the observations. While this may look like
overfitting, what is actually happening is that
in the ETKF, the estimates start trusting the
observations more and not using the ensem-
ble as much. The posterior mean drifts off a
bit in the middle and at the end and that is
likely an indication that the posterior mean
is just not a great estimator in this case.

6 Discussion

This paper touched on a number of chal-
lenges that can arise in a study like this one.
For example, a big challenge is selecting a
SIRS model. There are multiple different im-
plementations of the dynamic system. For
this paper, I selected the SIRS model that
Cazelles et. al. used in their 2018 paper.

Another challenge that arises in any
parameter estimation problem is knowing
whether or not the parameters are “correct”.
There is no way to know whether the param-
eters are exactly correct but plotting the ob-
servations and studying the results with the
estimated parameters are a decent way to de-
termine how well the estimated parameters
do.

Any use of the MCMC comes with its own
set of challenges. For example determining
where to start your chain (choosing a prior),
tuning the acceptance rate — default 25% —
by tweaking the random walk covariance and
evaluating convergence. Some methodology
for the later was discussed in the MCMC sec-
tion of this paper. Choosing a prior can be
done by selecting a tighter prior if you are
fairly confident of the general location of the
parameters. If you have no inclination as to
where the parameters may be, a wider prior
should be selected with bounds that seem rea-
sonable given the problem being solved. Se-
lecting the best random walk covariance, for
this paper, was done via trial and error until
a 25% acceptance rate was achieved.

The model with the CDC data was also
susceptible to representation error. The CDC
data contained number of deaths for pneumo-
nia and influenza. There is error extrapolat-
ing the number of infected people because the
estimation was rather simple (just multiplied
the number of deceased by a constant) and
because it may have been an overestimate due
to the inclusion of pneumonia.

Additional challenges included the intrin-
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sic randomness of the MCMC/ETKF model
and the necessity of positivity in the SIRS
model. The assumption of the SIRS model
is that the population is constant and that
the number of people in each group is posi-
tive. During the ETKF ensemble update, the
number of recovered people would sometimes
become negative and I needed to push those
values up to a small positive real number.
However, by doing this, I ended up modify-
ing the population and causing it to be larger
than it was originally. To mitigate this issue,
if S + I was greater than the population, I
reset the susceptible to the population minus
21 (the average number of deaths throughout
the season) and the number of infected to 21.

7 Conclusion

In conclusion, it is clear that the ETKF does
a decent job at estimating parameters for the
SIRS model however due to the Gaussian as-
sumption, a different model may have been
better suited. In the future, I would like
to implement this same model but with a
particle filter (removes Gaussian assumption)
and eliminate the “hacky” fix of maintaining
a constant population and keeping the state
variables positive. One option for doing so
would be to simply not keep track of the R
variable however its possible this does not en-
tirely solve the problem.
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