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Abstract

Influenza and pneumonia are closely related diseases that are global in scale. In-
fluenza (the flu) is a common cause of pneumonia. Most cases of influenza do not lead
to pneumonia, however, when they do, they are severe, and often terminal. Here, we
investigate the spread of influenza via air travel in the United States from 2009 – 2019.
In particular, we build an agent-based network SIRS model that incorporates air travel
at the state level to estimate the number of deaths due to influenza and pneumonia.
Our model also accounts for seasonality in the probability of spreading influenza by
incorporating a forcing sinusoidal function. Finally, using our model, we identify states
that we believe play an important role in spreading influenza through air travel. We
conclude that air travel does not explain a significant proportion of influenza spread.
While the number of deaths (from simulations with air travel) is correlated with the
true data, air travel itself is not a great predictor. After including seasonality, the esti-
mates including air travel appear to estimate the data better than the estimate without
air travel. Using our devised spreading centrality measure and the intuitive out-degree
measure, we conclude that California, Illinois, Georgia and Texas are important states
in spreading influenza via air travel.

1 Introduction

Influenza and pneumonia are closely related diseases that are global in scale. Influenza (the
flu) is a common cause of pneumonia. Most cases of influenza do not lead to pneumonia,
however, when they do, they are severe, and often terminal. In 2016, the flu and pneumonia,
together, were the eighth leading cause of death in the U.S. Influenza is responsible for
approximately 250,000 to 500,000 deaths around the world annually; in the United States
alone, about 50,000 adults die from pneumonia [1].
In this paper, we hypothesize that air travel has a significant effect on the dissemination of
the virus. In 1980, Knight claimed that the influenza virus can survive for up to an hour in
the air in enclosed environments such as airplanes [2]. In 1982, Bean et al. concluded that
the virus can survive for more than eight hours on hard surfaces such as stainless steel and
plastic, and up to five minutes on hands after transfer from other surfaces [3].
In this report, we investigate the spread of influenza via air travel in the United States from
2009 – 2018. In particular, we build a network SIRS model that incorporates air travel
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at the state level to estimate the number of deaths due to influenza and pneumonia. Our
model also accounts for seasonality in the probability of spreading influenza. Finally, using
our model, we identify states that we believe play an important role in spreading influenza
through air travel.
The rest of this report is organized as follows: Section 2 will discuss some previous work on
network SIRS models; Section 3 will present the data that we used; Section 4 will discuss our
model in detail; Section 5 will discuss our results; and Section 6 will conclude our analysis
and provide scope for future work.

2 Previous Work

Brownstein et al. assessed, with empirical data, the role of airline volume on the yearly
inter-regional spread of influenza in the United States [4]. They characterized seasonality
with band-pass filtering and showed that domestic and international air travel predicted
the spread and mortality of influenza respectively. Kenah et al. developed an epidemic
percolation network model to analyze the stochastic SIR model [5]. The results of Chan
et al. showed that seasonal influenza strains originate in different countries [6]. This lends
further evidence that air travel, or travel in general, plays an important role in global spread
of influenza.
In our paper, we use data similar to [4], but the influenza mortality is from years 2009 – 2018.
Our model is loosely inspired by the epidemic percolation network model, but for discrete
time steps. Using this, we intend to simulate a monthly spread, and determine whether air
travel truly affects the spread. Additionally, we identify states that play an important role
in the spread of influenza.

3 Data

The data for this paper comes from three different sources. The first dataset, compiled by
the Center for Disease Control and Prevention, consists of the number of deaths due to
influenza and pneumonia by state for every week from the last quarter of 2009 to the first
quarter of 2019 [7]. We use the US census data to determine the state level population
from each year from 2009 – 2019 [8, 9]. The third dataset is a 10% sample of domestic
airline travel information since the second quarter of 2007 collected by the U.S. Department
of Transportation [10]. We construct a dynamic network with states as nodes and airline
routes as edges. The number of deaths due to influenza and pneumonia will be a property of
time and node (state). In essence, our data allows us to study the dynamics of the infectious
disease on a dynamic network.

4 Methods

In this section, we describe the construction of our model with and without seasonality.
Additionally, we discuss parameter estimation and centrality measures.
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Constructing the networks In our directed network, the nodes represent each state and
the edge weights represent the number of travellers. Because the air traffic data is a 10%
sample, we multiply each edge weight in the data by 10. Further, to decrease temporal
granularity, we assume a uniform travel distribution and artificially split the quarterly travel
data into 3 individual months. This leads to 152 networks, one for each month.

Model for spreading influenza We build an agent-based SIRS model on each network.
Each state has agents (people) who are either infected, uninfected, or dead. During each time
step i.e., each month, we attempt to spread a random infection to the uninfected population
of each state with probability p0. Then people travel according to our network with infected
and uninfected people travelling at the same rate. The infected travellers at the destination
attempt to transmit the infection to a fixed fraction of healthy people with probability pt.
Then, at the end of this cycle, people either recover, die, or continue to stay infected with
probabilities pr, pd, pi. We repeat this cycle, without the air travel component, two more
times because a flu lasts for 1-2 weeks and each month has 4-5 weeks [11]. At the end of each
year, we repopulate the state with our census data, keeping track of deaths due to influenza.
Each of these infections, transmissions, and recoveries reduce to simple Binomial simulations.
In state k, at time t, let N

(k)
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where the probability in Equation 2 comes from noticing that person x is infected via trans-
mission if at least one infected person successfully transmits the infection. Further, when we
are evaluating the flu cycle without air travel, we set y

(k)
t = 0. And these values are used to

update N
(k)
t+1, I

(k)
t+1 for the next time step.

Measuring performance Our model estimates the number of deaths. We can measure
the average monthly error (normalized) using the following quantity,

error =
1

#months
· ||deathstrue − deathsest||F

||deathstrue||F
, (4)

where || · ||F denotes the Frobenius norm.

Estimating parameters Our model consists of 5 parameters p0, pt, pr, pd, pi. But we can
reduce one of the parameters by noting that pr + pd + pi = 1. One possible method for
estimating these parameters is to exhaustively search [0, 1]4 to find the the parameters that
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minimize the error defined in Equation 4. This is computationally infeasible. Instead, we
propose a second method — performing a random walk. We start the walk at a random
estimate (or an educated guess). With this estimate, we calculate the error and compare
it to an error tolerance that is chosen beforehand. Until we reach this threshold, we add
a small amount of Gaussian random noise to the previous estimates. We accept these new
parameters if the new error is smaller. Otherwise, the proposed parameters are discarded
and the previous parameters are used in the next iteration. In this manner, we locally search
for the parameters in a greedy fashion.
To make computations easier, we fix the probability of dying from influenza to be:

pd =

∑2018
year=2010(deathsyear) · 0.125∑2018

year=2010 populationyear

which was derived from a combination of the CDC death data from 2010 – 2018 as well as
WebMD’s statistics in “What Are Your Odds of Getting the Flu?” [12]. Now, we need to
estimate only p0, pt, pi which are the probability of a random infection, the probability of
transmitting influenza, and the probability that an infected person continues to stay infected
at the end of the flu cycle.

Modeling seasonality To model the seasonality of influenza, we allow the probability of
transmitting (and contracting at random) to vary in a sinusoidal fashion. The motivation
behind this is that flu seasons are periodic in nature, and sinusoidal functions are the simplest
and most versatile of periodic functions. Throughout the flu season, the probability of
infection/transmission should increase, especially around the peak of the flu season. In the
middle of the flu season (typically December – February) people are more susceptible to
the flu due to colder and drier weather leading to weaker immune systems (meaning more
infections) [12].
In our monthly simulations, we allowed our probabilities to vary temporally as

p

[
a cos

(π
6
t+ t0

)
+ (1− a)

]
where 0 ≤ t ≤ 12 and 0 ≤ a ≤ 0.5. Here, a represents how much we want to stretch the
variations vertically, and t0 represents the phase shift.

Control simulations In order to determine whether or not air travel actually affects the
spread of influenza, we compare the local spread of influenza to the national spread by
modeling the infection without and with air travel. For this study, we use the monthly
infection spread where we assume the travel occurs once a month. Within that month,
individuals are infected, the majority recover, and some die. As mentioned previously, our
model includes a local infection and an infection that was spread via air travel. This control
model excludes the air travel component.
Further, all of our simulations are performed with artificially split data – we assume a uniform
air travel distribution when we split quarterly air travel data into monthly air travel data.
To ensure that our simulations are not skewed by performing analysis on the month-level
granularity, we repeat all of our methods with the quarterly air travel data.
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Centrality measures To identify important states in the spread of influenza, we mea-
sure the spreading centrality of each state. The spreading centrality is a measure of the
importance of each state given that it was the initial seed of the infection. To compute the
spreading centrality for each state k, we run the model by infecting only state k in each time
step. Previously estimated parameters are used here. For this simulation, the probability
of randomly contracting an infection is set to 0 for all other states. The value of a state
i’s spreading centrality is computed as the total number of deaths occurring at the end of
the simulation. A running tally of the number of deaths is kept throughout the simulation
in order to measure this. This process is repeated multiple times for each state in order to
obtain a good average spreading centrality value.
We also compare these results from a naive measure of importance – out-degree. This metric
was used because, intuitively, as more people travel out from a state, the more likely this
state can spread a larger infection. Therefore, we would expect those states that have a
higher out-degree to also record a higher spreading centrality score.

5 Results

In this section, we discuss our results from our model and centrality measures. We conclude
this section by enumerating two flaws in our model.

5.1 Effect of air travel on deaths

In this section, we present the results from our model (on a monthly basis) from October
2009 to April 2019. We first discuss aggregate results across the US, and then we analyze four
states in particular – Alabama, Alaska, California, and Colorado. Alaska is selected as it has
one of the smallest populations in the US and is very remote from the other states. California
is chosen because it has the largest population in the US. Alabama is chosen because our
model severely over estimates the number of deaths. Finally, Colorado is selected because
it’s where we all live and we were interested in seeing how well our model performed in our
state.
First, we present the number of deaths on a monthly basis without including seasonality. The
results are shown in Figure 1. Since we do not force seasonality here, we do not effectively
capture the periodic variations in the true data. Further, our estimates are very low. An
important observation here is that the estimates with air travel are higher than the estimates
without air travel. This makes sense because by allowing long range links with air travel,
the infection can spread further and increase the number of deaths. A second important
observation is that the simulation with air travel has some periodic variation. This can
be attributed to the fact that these peaks correspond with summer vacations and winter
holidays, both of which see increased air traffic.
Figure 2 shows the number of deaths on a monthly basis, after incorporating seasonality.
Clearly, these results outperform the results in Figure 1. Both the red and blue curves are
sinusoidal in nature, which is a reflection of the sinusoidal forcing we imposed on p0 and pt.
Both the air travel and no air travel lines do not appear to be changing based on the year
but rather appear to follow the same trend. However if zoomed in, we see that generally,
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Figure 1: The number of deaths across US measured without seasonality. The black line
represents the real data, the red and blue lines represents the results from our model with
and without accounting for air travel respectively. In this simulation, we do not include
seasonality.

the number of deaths is subtly increasing over time. This model still does not capture the
steep increases and sharp dips observed in the true data. This might indicate that we need
a more sophisticated forcing function than sines and cosines.

Figure 2: The number of deaths across US measured with seasonality. The black line rep-
resents the real data, the red and blue lines represents the results from our model with
and without accounting for air travel respectively. In this simulation, we do not include
seasonality.

Our results so far have been on the aggregate level. We also looked at how well our model
did for specific states to see if it was able to model the number of deaths in smaller or larger
states better. The plots for the four chosen states are shown in Figures 4, 5 in Appendix A.
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Based on these investigations, we observe that our model performs well for some states but
not all. For example, Alabama and Colorado have similar populations (∼ 5 million) and our
model significantly overestimates the number of deaths in Alabama and does a reasonable
job with Colorado. For a state with a small population such as Alaska, our model severely
underestimates the number of deaths. For a state with a large population such as California,
our model also underestimates but not significantly.
One of the reasons that Alabama may be severely overestimated is because in reality. Al-
abama is a fairly warm and humid state that may see fewer cases of influenza. We can also
see that the true data for Alabama is fairly flat and does not change seasonally very much.
Our seasonal forcing may not apply to warmer and more humid states. California may be
well estimated because it is more populated, and there is a constant flux of people moving.
Colorado may also fit the same boat besides the fact that Colorado experiences four seasons
and that the temperature can vary significantly. Alaska is heavily underestimated and this
is likely due to the cooler and drier temperatures than in other states. Alaska likely sees
more cases of influenza and more deaths caused by the disease due to the climate.
We performed the same analysis on quarterly aggregated air traffic data and got similar
results. These results are shown in Appendix B.

5.2 Centrality measures

Figure 3 shows the centralities as measured by the out-degree and the spreading centrality
described in Section 4. Table 1 shows the top 10 states ranked by these centrality measures.
As we can see there is a strong correlation between our intuitive model for key states and the
results from our model. In fact the Pearson correlation coefficient between the two sets of
results is 0.54. This lends evidence to our belief that air travel is correlated with the spread
of influenza. We believe that California, Illinois, Florida and Texas are the key states in
spreading influenza.

Rank Out-degree Spreading Centrality
1 California Colorado
2 Florida Illinois
3 Texas Georgia
4 Georgia Utah
5 Illinois Texas
6 New York Montana
7 Colorado California
8 North Carolina Idaho
9 Arizona Nevada
10 Nevada Minnesota

Table 1: Top 5 states ranked by out-degree and spreading centrality

Three interesting states that are negatively correlated are Florida, Montana and Utah. The
large spreading centrality and small out-degree of Montana and Utah can be explained by
observing the destination of these travellers. These travellers go to populated states such as
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Figure 3: Centralities as measured by out-degree and our spreading centrality.

California, Colorado, Texas and Washington. Therefore, they have a greater chance to infect
more people. Travellers from Florida on the other hand visit less populated states, which
explains why its spreading centrality is small compared to the out-degree. The out-flow
for these outliers are shown in Appendix C. Once we remove these interesting outliers, our
correlation coefficient increases to 0.69.
Overall we can conclude that states with a higher out-degree generally also have a higher
spreading centrality. It is interesting to note, however, that this is not the only driving force
in a high spreading centrality score, as there are deeper interactions occurring that allow
some smaller out-degree states to still get a high spreading centrality score.

5.3 Discussion

One issue that we can take note of in our analysis is that the CDC death data included the
number of deaths during a given week between the fourth quarter of 2009 to the first quarter
of 2019 from influenza and pneumonia. It’s possible that when we extrapolate the probability
of deaths from our data, we are creating a representation error because we are overestimating
the number of infected people due to pneumonia and are likely miscalculating the number
of infected since our calculation introduces some amount of rounding error. Representation
error occurs when the model variables are not exactly the same thing as the real system.
Another potential flaw in our model is revealed when trying to fit parameters. We observed
two different things when we were estimating parameters. Firstly, the error (as measured
by Equation 4) would not drop below 0.56 no matter where we initialized the parameters.
Secondly, there is no unique minima in this parameter space.
We conjecture that this is because, our system is over-specified for five parameters. In
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other words, the five parameters are not sufficient for our model. This explains the first
observation because there is a limit beyond which we cannot squeeze more information from
these parameters. This also directly explains the second observation – there are multiple
sets of parameters that reach the same limit in different ways. Further, this also explains the
variability in our results across different states. By aiming to get a smaller error across all
states, the model compromises the diversity across different states. We think that by having
individual sets of parameters for each state, we can overcome this issue. On the other hand,
then we begin to overfit the model.

6 Conclusion

Overall, we can conclude that air travel does not explain a significant proportion of influenza
spread. While the number of deaths (from simulations with air travel) is correlated with
the true data, air travel itself is not a great predictor. Without the inclusion of seasonality,
our model appears to simply increase the number of deaths slowly over the course of the 10
years, without any fluctuations. After including seasonality, the estimates including air travel
appear to estimate the data better than the estimate without air travel. Using the spreading
centrality measure and the intuitive out-degree measure, we conclude that California, Illinois,
Georgia and Texas are important states in spreading influenza via air travel.
An important misrepresentation in our model was generality. We assumed the parameters to
be constant over time and space. Instead, we wish to have a separate set of parameters for
each state thereby capturing the state-wise variation more accurately without compromising
on the aggregate results. The tradeoff with this approach is the computational complexity
and the potential for overfitting our model. To make the problem more tractable, we could
implement Markov Chain Monte Carlo methods to estimate parameters more efficiently than
random walks. MCMC would give us a distribution for our parameters. We could then look
at the maximum a posteriori estimate or the posterior mean.
Another potential improvement can be having meta-population model within each state
or county. Though the flu has multiple strains and a single individual can be infected
multiple times within one season, on average, adults are infected twice per decade and
children contract the disease every other year [11]. We could use this to more accurately
model the spread of influenza. We could also decrease granularity to city or county level. In
our model, we treated LAX and SFO as a single node. If we had more data that captured this
granularity, it would make our model more accurate. In addition to this, we could incorporate
ground transportation data. We conjecture that ground transportation will contribute more
to spreading influenza as there are air travel restrictions for sick people.
Finally, we could also include “ghost” nodes for international airports. It’s highly likely that
some proportion of influenza is brought in internationally. Adding these ghost nodes could
increase the number of infected people within the US which would then increase the number
of deaths.
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A Plots for four states using monthly data

Figure 4: The number of deaths in Alabama, Alaska, California, Colorado measured without
seasonality. The black line represents the real data, the red and blue lines represents the
results from our model with and without accounting for air travel respectively. In this
simulation, we do not include seasonality.

Figure 5: The number of deaths in Alabama, Alaska, California, Colorado measured with
seasonality. The black line represents the real data, the red and blue lines represents the
results from our model with and without accounting for air travel respectively. In this
simulation, we do not include seasonality.
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B Plots using quarterly data

Figure 6: The number of deaths in Alabama, Alaska, California, Colorado, and across all
states measured without seasonality. Each time step corresponds to a single quarter. The
black line represents the real data, the red and blue lines represents the results from our
model with and without accounting for air travel respectively. In this simulation, we do not
include seasonality.
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Figure 7: The number of deaths in Alabama, Alaska, California, Colorado, and across all
states measured with seasonality. Each time step corresponds to a single quarter. The black
line represents the real data, the red and blue lines represents the results from our model
with and without accounting for air travel respectively. In this simulation, we do not include
seasonality.
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C Out-flow from Utah, Montana, Florida

Figure 8: Average out-degree from Utah, Montana, and Florida.
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