
FFT Fourier Project

KATHRYN GRAY, KSENIA LEPIKHINA, AMELIA WESTERDALE

1 INTRODUCTION
The Fast Fourier Transform (FFT) was created as an optimized way
to calculate the Discrete Fourier Transform (DFT) of a finite se-
quence of numbers. [7] For years the FFT was considered the most
important algorithm in engineering and applied sciences. The FFT
is especially effective and important in one and multidimensional
systems theory and signal processing. In this paper we outline the
history of the Fast Fourier Transform, its mathematical background,
various applications of the FFT, comparable algorithms to the FFT,
and its setbacks. The mathematics of the DFT and the FFT will be
stated and explained, and then an experiment will be conducted to
demonstrate an application in detail.

2 HISTORY
In 1805, Carl Friedrich Gauss was working on determining the orbit
of asteroids in certain locations. Through the process, he developed
the DFT 17 years before Fourier even published his results. [18].
Gauss was influenced by the analysis of trigonometric series of Euler
(1707-1783), the first iteration of the DFT (restricted to finite cosine
Fourier Series) by Clairaut (1713-1813) and the second iteration
of the DFT (restricted to finite sine Fourier Series) by LaGrange.
Clairaut and Lagrange were focused on "orbital mechanics and the
problem of determining the details of an orbit from a finite set of
observations." [7] The two used interpolation for orbit determination.
Consequently, Gauss extended this from trigonometric interpolation
to periodic functions that are not necessarily odd or even.

Fig. 1. Discoveries of computational methods for calculating DFT and their
applications [7]

Gauss’s compiled work is titled “Theoria Interpolationis Methodo
Nova Tractata". Gauss’s work with the Discrete Fourier Transform

was not published while he was alive but rather remained unpub-
lished as a part of a collected work. The year 1805 is the presumed
composition date of his treatise. This predates Fourier’s work with
harmonic series by two years. Parts of this treatise outline trigono-
metric interpolation algorithms. The articles were written in neo-
Latin and were difficult to translate because Gauss used unusual
notation (i.e. π instead of n as the length of a sequence, a, a’, and a”
as indices of time series, etc.). [7] In this treatise, Gauss outlined a
form of what is now called the DFT. In order to calculate the DFT,
Gauss invented an algorithm which would now be recognized as
the FFT, but did not recognize its importance at the time. [18]
In 1965, J. W. Cooley and J. W. Tukey were able to optimize the

DFT algorithm (similarly to Gauss’s work) and created the FFT. It
was later found that the two authors independently rediscovered
the FFT that Gauss had discovered nearly a century and a half ago.
Formerly, it was thought that the DFT required N 2 arithmetic oper-
ations, but Cooley and Tukey were able to prove that the new FFT
algorithm could be completed in NloдN arithmetic operations. In
Cooley and Tukey’s paper, they claimed their work was influenced
only by I.J. Good’s paper, “The Interaction Algorithm and Practi-
cal Fourier Analysis" written in 1958 [7], however Cooley-Tukey’s
algorithm was labeled the FFT and Good’s algorithm was labeled
the Prime Factor Algorithm (PFA). The difference between DFT and
PFA are that the DFT is able to work with any composite integer
sequence length and the PFA is able to work only with any integers
with relatively prime factors as shown in Figure 1. This paper will
not elaborate on the PFA, but will instead focus on the DFT and it’s
implementation, specifically, the FFT.

3 MATHEMATICAL BACKGROUND: WHAT IS A FFT?
HOW DOES IT WORK?

3.1 Discrete Fourier Transform
Often, questions in mathematics are difficult to solve by hand. Such
problems are better solved with computers. One such problem that
often arises is the Fourier Transform. However, because computers
can only deal with discrete values, an approximation to the Fourier
Transform is necessary, hence the Discrete Fourier Transform is
used. The DFT approximates the Fourier Transform and is suitable
for computation. To show how the DFT is derived, let f (t) be the
original function and f̂ (k) be the Fourier Transform. This derivation
is reformatted and expanded upon from the derivations from [2]
and [6].

3.1.1 Derivation of the DFT. The first step is to sample f (t),
because we can only hold a finite amount of values, a sampling
function is necessary. This sampling function will be described
more in the issues section as there are different forms, but for now,
let ∆(t) be the sampling function, and for simplicity, assume this
function takes samples every T seconds. Also, note that δ is the



dirac delta function, so ∆ samples by repeated use of the δ function.

f (t)∆(t) = f (t)
∞∑

n=−∞
δ (t − nT )

=

∞∑
n=−∞

f (nT )δ (t − nT )

The last line comes from an identity that we will not show here.
Then, since the function is assumed to be periodic, we can con-

struct an interval that will encapsulate the function. Let this be
given as −T

2 < t < T0 −
T
2 , where T0 is the period. This interval is

chosen to help avoid aliasing (an issue discussed in Section 8). Then,
assuming the sampling function gives N samples in the interval, we
can write the function again as follows:

N−1∑
n=0

f (nT )δ (t − nT )

Then, if we wanted a total approximation of f (x), we arrive at the
following, because we merely repeat what was found before across
the whole axis. This gives them summation, with offsets given by

f (x) ≈
∞∑

m=−∞
T0

N−1∑
n=0

f (nT )δ (t − nT −mT0)

Now we can set up the Fourier Transform of the approximation
to f (x). We will take one period of the function, but this will extend
to all of them. However, this means that we can deal only with the
n summation.

f̂ ≈

∫ T0−T
2

−T
2

N−1∑
n=0

f (nT )δ (t − nT )e−iktdt

=

N−1∑
n=0

f (nT )

∫ T0−T
2

−T
2

δ (t − nT )e−iktdt

=

N−1∑
n=0

f (nT )e−ikT

3.1.2 Inverse DFT. The Inverse Discrete Fourier Transform fol-
lows a similar proof, so wewill state it below, but omit the derivation.

f (x) =≈
1
N

N−1∑
n=0

f̂ ei2πnx/Ndk

3.1.3 DFT Naive Algorithm. Since we motivated the DFT with
approximating the Fourier Transform using a computer, an algo-
rithm should be put forward to solve this. The first algorithms to
attempt this were implemented without taking advantage of any
properties of the Fourier Transform. This led to an algorithm, that
although simpler to understand, has a run time of O(N 2).

To solve the DFT, we set up matrices to solve, for ease of notation,
let ω = e2πi/N



ω0 ω0 ω0 . . . ω0

ω0 ω1 ω2 . . . ωN−1

ω0 ω2 ω4 . . . ω2(N−1)

ω0 ω3 ω6 . . . ω3(N−1)

...
...

...
...

...

ω0 ωn ω2n . . . ωn(N−1)





f (0)
f (1)
f (2)
f (3)
...

f (N − 1)


=



f̂0
f̂1
f̂2
f̂3
...

f̂N−1


Then, solve for the f̂ values, each one will take N multiplications

and N − 1 additions (this is accounts for each row). Then there
are N rows and we must solve for each of the f̂ , giving a naive
implementation taking O(N 2) operations to complete. While this
algorithmworks, a faster algorithm is preferable, especially for large
N .
Storing the DFT Matrix can be efficient when factorizing it into “a
short product of sparse matrices” that can be represented by fewer
numbers than its size because much of their entries would be zero;
only the non-zero entries and their locations need to be stored [16].
Not only is the DFT matrix square, it is invertible. This follows that
the inverse DFT can be computed. Likewise, there exists an Inverse
FFT.

3.2 Fast Fourier Transform
The Fast Fourier Transform takes advantage of the symmetries in
the DFT to have a much faster algorithm. First, we must show that
the transform is periodic.

f̂ (m + N ) =

N−1∑
n=0

f (n)e−i2πn(m+N )/N

=

N−1∑
n=0

f (n)e−i2πn(m/N+1)

=

N−1∑
n=0

f (n)e−i2πnm/N )e−i2πn)

=

N−1∑
n=0

f (n)e−i2πnm/N )

= f̂ (m)

The Fast Fourier Transform is a recursive algorithm used to com-
pute the Discrete Fourier Transform, but with an O(NloдN ) run-
time complexity. By the Danielson-Lanczos Lemma, if N is a power
of 2, the DFT, approximated as the sum

∑N−1
n=0 f (nT )e−ikT , can be

split into two different summations of half the length (we are using
the definition that ω = e2πi/N again):

N−1∑
n=0

f (n)ωkn =

N /2−1∑
n=0

f (2n)ω2kn +
N /2−1∑
n=0

f (2n + 1)ωk (2n+1)

=

N /2+1∑
n=0

f (2n)ω2nk + ωk
N /2−1∑
n=0

f (2n + 1)ω2kn

= f̂1 + ω
k f̂2

2



The last line shows the power of this decomposition. The original
problem has now been split into two different versions of the same
problem. This gives a runtime of O(N logN ), since each split must
be evaluated, giving the N term and the splitting can be shown to
give the log(N ) term.
If N is not a power of two, then this splitting can be continued

until the sum consists of one data point.
The FFT can be performed on subsets of points with lengths cor-

responding to the prime factors of N . This results in a slower, yet
asymptotically identical, run-time.
A nice visualization of how the Cooley-Tukey algorithm for calculat-
ing the Fast Fourier Transform can be seen in the butterfly diagram
in Figure 2.

Fig. 2. Butterfly diagram of Radix-2 FFT algorithm [3]

The algorithm breaks the length N DFT into two N/2 length DFTs
by splitting up the even and odd indices. It then combines the results
through multiple butterfly operations. This method of splitting and
combining saves a factor of two in complex multiplies.

3.3 Is it an actual transform?
The mathematical definition of a transform is a function that maps
to itself [17]. As discussed, many real functions are mapped to the
complex Fourier space and then transformed back into the original
space with inverse FFT. The result would be complex, as opposed to
real, and only the real part is considered. On the other hand, the DFT
is a discretization of a continuous function–applying the inverse to
the transformed function would yield a signal. Therefore, the DFT
is not a proper transform under many mathematical definitions.

4 APPLICATIONS OF THE FAST FOURIER TRANSFORM
There are various applications for the Fast Fourier Transform. Some
areas include applied mechanics (aircraft wing flutter suppression),
sonics and acoustics (architecture acoustic measurement), bio- med-
ical engineering (diagnostics of airway obstruction), signal pro-
cessing (speech synthesis and recognition), instrumentation (mi-
croscopy), and communication (speech scrambler system). [2]
A specific application of the FFT is the deblurring (deconvultion) of
an image. To deblur an image, it is necessary to have the blurred im-
age itself and the Point Spread Function (PSF) of the original image.
The PSF "describes the response of an imaging system to a point
source [single identifiable localized source] or point object" [11]. In
other words, the point spread function essentially describes how

"blurred" an image really is. It describes the quality of an imaging
system. Fast Fourier Transforms play a role in blurring like so:

FFT (clean image) + FFT (point spread function) =
FFT (blurred image)

so, in order to get the clean image, the equation comes [5]:

clean image = FFT−1[
F FT (blurred image)

F FT (point spread function) ]

Since the image is represented as a matrix, then using the Fast
Fourier Transform to find the clean image is much faster than the
Discrete Fourier Transform. The visualization can be seen in Figure
4 below.

Fig. 3. Blurred galaxy photo [5] Fig. 4. Less blurry galaxy photo [5]
It’s faster because the matrix can be broken down into multiple
matrices with lots of zero entries. On each of those smaller matrices,
the DFT can be applied. Being able to break down a matrix in such
away, allows for the number of operations to go down from O(N 2)
to O(NloдN ). [9]
Another application of the Fast Fourier Transform is in forensics.
When looking at fingerprints for example, the background to the
image of the print might make it difficult to analyze.

Fig. 5. Original print[10] Fig. 6. Cleaned up print [10]
In this case, the Fast Fourier Transform helps remove the ridges
from the background of the original image. "The FT has peaks at
spatial frequencies of repeated texture." [10] In Figure 5, the Fast
Fourier Transform helps remove the texture of the background by
removing the periodic background.

5 EXPERIMENTS
The Fast Fourier Transform has many implementations. The Cooley-
Tukey implementation is typically known as the Radix-2 DIT (deci-
mation in time) FFT. Paired with this algorithm is the Radix-2 DIF
(decimation in frequency) FFT (Sande-Tukey algorithm) which we

3



will not elaborate on in this paper. The appendix of this paper in-
cludes a MATLAB implementation of the Cooley-Tukey implemen-
tation of the Fast Fourier Transform. This version of the algorithm
implements a divide and conquer strategy that recursively splits a
DFT of size N into multiple smaller DFTs. [4] The function we im-
plemented takes an array of values and returns the DFT of the array
of values using the FFT. The FFT implementation applies when the
length of the array is an integer power of 2. The power of 2 length
assumption is not necessary but allows for a simpler implementa-
tion by hand. An example of the FFT of an array look something
like so:

fft([1 2 3 4 5 6 7 8])
ans = 36 -4+9.6569i -4+4i -4+1.6569i -4 -4-1.6569i -4-4i

-4-9.6569i

If we wanted to apply the Fast Fourier Transform to a matrix of
size [2n ,2n] where n is any positive integer, then an example of our
fft_matrix function would look like so:

fft_matrix([1 5 9 13; 2 6 10 14; 3 7 11 15; 4 8 12 16])
ans = 10 26 42 58
-2+2i -2+2i -2+2i -2+2i
-2 -2 -2 -2
-2-2i -2-2i -2-2i -2-2i

A quick example of how the FFT works on an image can be seen
below. This example makes use of MATLABs mat2gray function as
well as the three functions in the appendix of this paper.

A = [1 5 9 13; 2 6 10 14; 3 7 11 15; 4 8 12 16]
I = mat2gray(A)
disp(I)
>> 0 0.2667 0.5333 0.8000

0.0667 0.3333 0.6000 0.8667
0.1333 0.4000 0.6667 0.9333
0.2000 0.4667 0.7333 1.0000

FFTI = fft_matrix(I)
disp(FFTI)
>> 0.4 1.467 2.533 3.6
-0.133+0.133i -0.133+0.133i -0.133+0.133i -0.133+0.133i
-0.133 -0.133 -0.133 -0.133
-0.133-0.133i -0.133-0.133i -0.133-0.133i -0.133-0.133i
FFTBack = fft_inverse_ksenia_matrix(FFTI)
disp(FFTback)
>> 0 0.2667 0.5333 0.8000

0.0667 0.3333 0.6000 0.8667
0.1333 0.4000 0.6667 0.9333
0.2000 0.4667 0.7333 1.0000

imshow(I)
imshow(FFTI)
imshow(FFTBack)

and the three imshow commands return first the original gray scale
image, then the FFT of image I, FFTI (note MATLAB does not plot
complex numbers), and finally, the inverse FFT of FFTI, FFTBack.

Fig. 7. Image Fig. 8. FFT of Image Fig. 9. Inverse FFT
After computing the FFT, we are essentially transforming from a
function of time to a function of frequency. Many of those values
are converted to the complex plane. Taking the inverse Fast Fourier
Transform, we are returning back from the frequency domain to
the time domain.
An example of how the Fast Fourier Transform changes an image
from the time space to the frequency space follows below. The image
was taken from https://amath.colorado.edu/faculty/segur/
and was converted to black and white. The image was cropped and
padding was added in order to create a matrix of size 2nx2n .

Fig. 10. I = Image Fig. 11. F = FFT(I) Fig. 12. FFT−1(F)

Note that this also works if you do the inverse first.

Fig. 13. I = Image Fig. 14. F2 = FFT−1(I) Fig. 15. FFT(F2)

The first transform of the original image is the Fast Fourier Trans-
form. This is essentially assuming that the first image is a time
matrix and the FFT converts it to a frequency matrix. When we take
the inverse FFT of the new frequency matrix, we get the original
time matrix back.
In the second group of images, we start by taking the inverse Fast
Fourier Transform first. When we do so, we are assuming that the
original matrix is a matrix of frequencies and converting it to a
time matrix. Taking the FFT of the time matrix converts it back to a
frequency matrix.

6 FFT COMPETITORS

6.1 Image Compression Competitors
One of the applications of a Fast Fourier Transform is image com-
pression. A comparable competitor for the FFT for image compres-
sion is the Discrete Cosine Transform (DCT).The DCT is preferred
over the FFT in this case because it "incorporates more information
from the image in fewer coefficients." [8] Unlike the FFT, the DCT
assumes an even extension outside of the domain on which we
have a sample which means that the function is continuous on the

4



boundary. When images are compressed using the FFT, the quality
of the image deteriorates significantly more than the DCT when
for both 80% of the coefficients are discarded. Both the DFT and
the DCT decompose a discrete time vector into a sum of scaled and
shifted basis functions, however the DFT uses complex exponential
functions and the DCT uses real valued cosine functions. Since the
DFT works with complex numbers and the DCT works with real
numbers and audio and image data are usually represented with
real numbers, the natural choice for working with audio and image
compression is the DCT. So in this case, the FFT is less accurate
than the DCT.

6.2 DFT Competitors
When looking for only a few frequencies, the Goertzel algorithm[14]
can be used. This algorithm takes less time than the FFT when the
number of frequencies is less than log(N ). The Goertzel algorithm
takes O(N ) time to find one frequency. The algorithm also has no
restrictions on how many samples are given, so it does not need to
be a multiple of 2n (n an integer).
Another algorithm is Bluestein’s Fast Fourier Transform or the

Chirp-Z Transform (CZT) is used to find some of the spectral fre-
quencies over some range[15]. While the complexity of CZT is
larger than the FFT, the CZT is sometimes used as it has better
resolution than the FFT. The equation for the CZT is found through
convolutions of the DFT.

7 PROBLEMS WITH FFT

7.1 Sampling
One of the issues that may arise when using the DFT to approximate
the Fourier Transform is how the function is sampled and howmany
samples are taken. A lower bound on the amount of samples that is
necessary has been given as 2 times the bandwidth[1] (bandwidth
being the difference between the upper and lower frequencies).
This is known as the Nyquist sampling rate. If the sampling rate
is lower than this, the samples could come from different initial
functions, adding uncertainty that the solution is correct. Sampling
is such an important topic, we cannot cover everything that has
been formulated on it here.

7.2 Aliasing
Aliasing can arise when the function is undersampled. Aliasing
refers to having two solutions for given sample points or having
multiple frequencies covered by one data point. When the sampling
rate is too low, the larger frequencies "fold back" on itself, which
leads to another name this can go by, spectral folding. Often, when
using real data, it is not possible to take enough samples to fulfill
the Nyquist sampling rate. In this case, care must be taken so the
important frequencies to the problem are still sampled well enough.
In general, a solution will have any number of solutions at 2πn
higher frequency. To mitigate this problem, FFT and other DFT
solvers will use the lowest one.

7.3 Multidimensional FFT
The Fast Fourier Transform does not necessarily scale well for higher
dimensions. In this paper we have mentioned how the FFT is an
accurate approximation of the Fourier Transform for one dimension
and for two dimensions (matrices). The two dimensional version
of the FFT has an asymptotic run time of O(N 2 log(N )). However,
when we scale to n-dimensions, there are some runtime problems.
Although the FFT is surprisingly stable [12], for high dimensional
FFTs (N-D FFT) "complexity increases with an increase in dimension,
leading to costly hardware and low speed of system reaction." [13]
The runtime when scaling to n-dimensions becomes O(Nnloд(N )).
In general, the FFT can only reduce the runtime along one dimen-
sion.

8 CONCLUSION
The Fast Fourier Transform is held in high regards for 20th and 21st
century applied sciences, and is used in fields ranging from image
processing to bio-medical engineering. This algorithm modernizes
the useful Discrete Fourier Transform, invented by mathematicians
as early as the 1700s, so that larger amounts of data can be computed
and manipulated. There are nearly countless applications of the FFT,
but a simple, yet effective, experiment on image processing was
provided to demonstrate not only its usefulness, but its substantial
accessibility through popular computing environments, such as
MATLAB. Although there are competitors and setbacks to the FFT,
the creation of a divide-and-conquer algorithm that improves the
run-time complexity of the DFT is impressive and remains employed
to scientists, engineers, and mathematicians today.

9 APPENDIX
The first and most important function we wrote was the fft func-
tion. This function takes an array or vector of size 2n and computes
the Fast Fourier Transform and returns the resulting array or vector.

function [y] = fft(x) % function for calculating fft of
array or vector

len = (length(x)); % find length of array or vector
half = ceil(len/2);
exponential = exp(-2 * pi * 1i / len) .^ (0 : half -

1); % fft exponential piece
if len == 1 % if the length of the array is 1, the FFT

= array
y = x;

else
y1 = fft(x(1: 2 : (len - 1))); % recursively call

on odd incides
y2 = fft(x(2: 2 : (len))); % recursively call on

even indices
y = [y1+exponential .* y2,y1-exponential .* y2];

%create results
end

end

The second function we wrote is fft_matrix. This function takes
a matrix of size 2nx2n and returns the Fast Fourier Transform of it
which will also be a matrix of size 2nx2n . This algorithm will run
in O(N2log N) time because it is calling fft for each column in the

5



matrix. Since fft runs in O(N log N) time, this one runs in O(N2

log N) time since fft is called n times.

function [V] = fft_matrix(x) % function for calculating
fft of matrix

ncol = size(x,2); % get size of 2^n x 2^n matrix
V = zeros(ncol,ncol); % pre allocate empty matrix for

result
for k = 1:ncol % iterate through each column and call

fft
result = fft(x(:,k));
V(:,k) = result; % add column to V

end
end

This final algorithm, fft_inverse_matrixwas written to calculate
the inverse Fast Fourier Transform of a 2nx2n matrix. The algorithm
follows an example on page 3 in: [9].

function [V] = fft_inverse_matrix(x) % function for
finding inverse fft of matrix

y = conj(x); %take the complex conjugate of all values
in x

temp = fft_matrix(y); % call fft_matrix on the conjugate
matrix

c = conj(temp); % take the conjugate again
for k = 1:size(c,2) % call on each column

V(:,k) = c(:,k)/size(c,2); % normalize
end

end

REFERENCES
[1] Anders Brandt and Kjell Ahlin. 2010. Sampling and time-

domain analysis. Sound and Vibration, 44, 5, 13.
[2] E. Oran Brigham. 1988. The Fast Fourier Transform and its

Applications. Prentice-Hall, Inc., New Jersey, US.
[3] [n. d.] Butterfly diagram. https://en.wikipedia.org/wiki/

Butterfly_diagram. Accessed: 2018-12-05. ().
[4] [n. d.] Cooley–tukey fft algorithm. https://en.wikipedia.org/

wiki/Cooley%E2%80%93Tukey_FFT_algorithm. Accessed:
2018-12-04. ().

[5] Earl F. Glynn. 2007. Fourier analysis and image processing.
Stowers Institute for Medical Research. (February 14, 2007).
Retrieved 12/01/2018 from http://research.stowers.org/mcm/
efg/Report/FourierAnalysis.pdf.

[6] J. Fessler. [n. d.] Digital signal processing and analysis. ().
https://web.eecs.umich.edu/~fessler/course/451/l/pdf/c5.
pdf.

[7] 1984. Gauss and the history of the fast fourier transform. IEEE
ASSP Magazine, (October 1984).

[8] [n. d.] Image compression using fourier techniques. http :
//www.maths.usyd.edu.au/u/olver/teaching/Computation/
ExampleProject.pdf. Accessed: 2018-12-03. ().

[9] [n. d.] MIT Lecture 26: Complex Matrices; Fast Fourier Trans-
form. URL: https://ocw.mit.edu/courses/mathematics/18-
06sc- linear-algebra- fall-2011/positive-definite-matrices-
and-applications/complex-matrices-fast-fourier-transform-
fft/MIT18_06SCF11_Ses3.2sum.pdf. Last visited on 2018/12/03.
().

[10] [n. d.] Oxford Lecture 2: 2D Fourier transforms and applica-
tions. URL: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.
pdf. Last visited on 2018/12/05. ().

[11] [n. d.] Point source function. https://en.wikipedia.org/wiki/
Point_spread_function. Accessed: 2018-12-01. ().

[12] James C. Schatzman. 1996. Accuracy of the discrete fourier
transform and the fast fourier transform. SIAM Journal of
Scientific Computing, 17, 5, 1150–1166.

[13] Athina Petropulu Shaogang Wang Vishal M. Patel. 2016. An
Efficient High-Dimensional Sparse Fourier Transform. Tech-
nical report. IEEE.

[14] [n. d.] Single tone detection with the goertzel algorithm. ().
https://www.embedded.com/design/real-world-applications/
4401754/Single-tone-detection-with-the-Goertzel-algorithm.

[15] S. Sirin. 2003. Czt vs fft: flexibility vs speed. (2003). https:
//www.osti.gov/servlets/purl/816417.

[16] [n. d.] The fft via matrix factorizations. https : / /www.cs .
cornell.edu/~bindel/class/cs5220- s10/slides/FFT.pdf. Ac-
cessed: 2018-12-06. ().

[17] Graham Wilkinson Leland. 2005. The Grammar of Graphics
(2nd ed) p. 29. Springer.

[18] Stefan Worner. [n. d.] Fast Fourier Transform. Technical re-
port. Swiss Federal Institute of Technology Zurich.

6

https://en.wikipedia.org/wiki/Butterfly_diagram
https://en.wikipedia.org/wiki/Butterfly_diagram
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://research.stowers.org/mcm/efg/Report/FourierAnalysis.pdf
http://research.stowers.org/mcm/efg/Report/FourierAnalysis.pdf
https://web.eecs.umich.edu/~fessler/course/451/l/pdf/c5.pdf
https://web.eecs.umich.edu/~fessler/course/451/l/pdf/c5.pdf
http://www.maths.usyd.edu.au/u/olver/teaching/Computation/ExampleProject.pdf
http://www.maths.usyd.edu.au/u/olver/teaching/Computation/ExampleProject.pdf
http://www.maths.usyd.edu.au/u/olver/teaching/Computation/ExampleProject.pdf
https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/complex-matrices-fast-fourier-transform-fft/MIT18_06SCF11_Ses3.2sum.pdf
https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/complex-matrices-fast-fourier-transform-fft/MIT18_06SCF11_Ses3.2sum.pdf
https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/complex-matrices-fast-fourier-transform-fft/MIT18_06SCF11_Ses3.2sum.pdf
https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/complex-matrices-fast-fourier-transform-fft/MIT18_06SCF11_Ses3.2sum.pdf
http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf
http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf
https://en.wikipedia.org/wiki/Point_spread_function
https://en.wikipedia.org/wiki/Point_spread_function
https://www.embedded.com/design/real-world-applications/4401754/Single-tone-detection-with-the-Goertzel-algorithm
https://www.embedded.com/design/real-world-applications/4401754/Single-tone-detection-with-the-Goertzel-algorithm
https://www.osti.gov/servlets/purl/816417
https://www.osti.gov/servlets/purl/816417
https://www.cs.cornell.edu/~bindel/class/cs5220-s10/slides/FFT.pdf
https://www.cs.cornell.edu/~bindel/class/cs5220-s10/slides/FFT.pdf

	1 Introduction
	2 History
	3 Mathematical Background: What is a FFT? How does it work?
	3.1 Discrete Fourier Transform
	3.2 Fast Fourier Transform
	3.3 Is it an actual transform?

	4 Applications of the Fast Fourier Transform
	5 Experiments
	6 FFT Competitors
	6.1 Image Compression Competitors
	6.2 DFT Competitors

	7 Problems with FFT
	7.1 Sampling
	7.2 Aliasing
	7.3 Multidimensional FFT

	8 Conclusion
	9 Appendix

