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1 Introduction

Malaria is caused by Plasmodium parasites
which are transmitted to people through
the bites of infected female Anopheles
mosquitoes. People who contract malaria can
face severe illness including death if they are
not treated quickly. Though the mosquito
borne infectious disease is primarily prevalent
in Africa, cases of the disease have been found
on each continent. The disease is preventable
and curable, however, in 2018, “there were an
estimated 228 million cases of malaria world-
wide” [1]. Even more alarming, there were
approximately 405,000 deaths in 2018 [1]. In
order to prevent the spread of malaria, vector
control interventions have been implemented
across Africa. There are two forms of vec-
tor control — long-lasting insecticidal nets
(LLINs) and indoor residual spraying (IRS).
These vector controls are primarily focused
on protecting people when they are indoors
or in bed [2]. IRS is done by spraying the
inside of housing structures with an insecti-
cide while LLINs are used to protect people in
their sleep by providing a physical insecticidal
barrier. While these methods seem proven,
it is being discovered that mosquitoes are de-
veloping resistance to these insecticides which
highlights the need to study and improve the
tools to combat malaria [1]. This need for
continued research is a main reason why we
chose this paper topic.

Malaria is frequently researched across mul-
tiple disciplines ranging from biomedical and
epidemic research to network models [3]
to research on deforestation [4]. The re-
search conducted in this paper is inspired
by Sherrard-Smith et al.’s paper “Mosquito
feeding behavior and how it influences resid-
ual malaria transmission across Africa” (July
2019). Their research focused largely on esti-
mating the number of outdoor mosquito bites

across sub-Saharan Africa, exploring tempo-
ral trends of the epidemiological spread and
estimating the significance to the public and
finally estimating the “residual transmission”
across Africa to make a claim about the re-
lationship of outdoor biting and the spread
of the disease. This is an important rela-
tionship to explore because even with LLINs
and IRS populations are still seeing malaria
spread. This means that vector controls are
not enough to prevent this disease and other
ways must be explored [2].

The main focus of this paper was to recreate
the temporal analysis that was done in the
paper by Sherrard-Smith et al. In particular,
we explored the temporal aspects of mosquito
bites indoors and in bed (within insecticide-
treated bed nets) and aimed to verify if the
paper took into account that time is a fre-
quent confounder that may cause spurious re-
lationships. As a starting point, we investi-
gated if the paper’s results violated any re-
gression assumptions. In this investigation,
we found some potential violations and con-
ducted our own analysis to try to account for
these.

In addition to exploring Sherrard-Smith’s re-
search [2], we looked into other malaria stud-
ies and factors that could cause outdoor bit-
ing to increase. Some of these involved look-
ing into a specific country’s population, GDP,
average humidity, etc. to see if these factors
were also contributing to the proportion of
bites measured. These new data points lead
us to discover a new model that we believe
may tell the story of the data more accurately.
This data was collected from many different
sources accourding to Sheppard-Smith et al.
[2] and was purely observational which pro-
hibited us from deriving a causal effect. How-
ever, we were able to identify a relationship
between the proportion of bites and some at-
tributes of a country.

1



2 Data

For this project, we worked with a cou-
ple of different data sources. Our pri-
mary data source was the dataset provided
in the appendix of the paper: “Mosquito
feeding behavior and how it influences
residual malaria transmission across Africa”
[2]. The data was pulled by download-
ing the necessary Excel spreadsheet files
from the appendix of the paper at this
source: https://www.pnas.org/content/

116/30/15086/tab-figures-data.

The data, as downloaded from the appendix,
came formatted as an Excel spreadsheet with
multiple sheets. In order to be able to ana-
lyze the data comfortably, we manually split
the spreadsheets into separate files and con-
verted them to CSVs. The primary CSVs we
looked at were the sheets containing informa-
tion about the proportion of humans inside
at each hour of the day1, the proportion of
humans in bed at each hour of the day2, the
proportion of mosquito bites indoors (φI), the
proportion of mosquito bites in bed (φB), and
country level estimates of φI and φB over time
(1989-2017) by mosquito species.

The columns of each proportion dataset con-
tained data from various papers (over 20
datasets) [2]. Each row indicated the hour
of day and the data itself consisted of pro-
portions with ranges from 0 to 1.

The country data consisted of data from 12
African countries, the specific sites that were
used to find estimates for φI and φB, and
which study the data came from. For our
purposes, we ignored the specific sites and
which study the data came from and instead
grouped the data by country and year and av-

eraged the φ values. The data also included
whether IRS or LLINs were used and what
type along with which species that was stud-
ied.

In addition to the data provided in the paper,
we pulled data on the population (in millions
of people) of each country and year that cor-
respond to the data provided by Sherrard-
Smith, et al., the GDP (in billions of USD)
for each country and year pair, the average
yearly precipitation (in millimeters) in each
country, the average yearly humidity (out of
100 percent) in each country, and the aver-
age yearly temperature (in Fahrenheit) for
each country. The first two (population and
GDP) are specific to a country and year and
the last few (precipitation, humidity and tem-
perature) are only specific to a given country.

The dataset mentioned in the previous para-
graph was manually created. To create it,
for each country, we determined the years
that it had data for and manually created a
CSV with columns: country, year, popula-
tion, GDP, humidity, temperature, and pre-
cipitation. The new CSV ended up having 60
rows. For analysis, this data was joined to
the Sherrard-Smith, et al. data.

All of the data from Sherrard-Smith, et al.
are pre-processed meaning that we did not
have access to the raw data. The data that
was used from the paper is all observational.
From that dataset, we were given the normal-
ized proportion of people’s indoor and in bed
hours, the normalized proportion of indoor
mosquito biting and in bed mosquito biting,
the country name, the year and mosquito
species. Each of the predictors are observa-
tional.

1These value were implicitly used in the φ values
2See the previous note.
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The data that was pulled (using a simple
google search) population, GDP, etc., was
also observational.

The dataset from Sherrard-Smith, et al. con-
sisted of multiple discrete parameters such
as country, site, year, spray or no spray,
mosquito species, as well as two primary con-
tinuous parameters (φI and φB, the propor-
tion of indoor biting and in bed biting, re-
spectively). Note, as mentioned previously,
we chose to ignore site as that was too gran-
ular of a measure. We also chose to ignore
spray versus no spray for our analysis and
simply focused on the proportion of biting
indoors and in bed. Additionally, it’s impor-
tant to note that φI and φB are not observed
values but are rather derived values:

φI =

∑
t pI(t)λI(t)∑

t

(
(1 − pI(t))λO(t) + pI(t)λI(t)

)
φB =

∑
t pB(t)λI(t)∑

t

(
(1 − pI(t))λO(t) + pI(t)λI(t)

)

where pI(t) is the proportion of people inside
at hour t, λI(t) is the sum of bites inside at
hour t over the sum of bites for all hours for
both indoor and outside (i.e. the biting rate
indoors) and similarly for pO(t), λO(t), and
λB(t).

3 Methods

Our original goal was to recreate the results of
the data. First, we wanted to verify whether
or not the proportion of biting indoor and
the proportion of biting in bed were highly
correlated:

The figure above demonstrates that clearly,
there is a strong positive relationship between
φI (proportion of indoor bites) and φB (pro-
portion of in bed bites). We can see that
though they are correlated, they have slightly
different means:

The density figure above shows us that on
average we see more biting indoors than in
bed. This is reasonable because people are
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protected by LLINs and IRS in bed. While
conducting a t-test may seem appealing for
this conclusion, we can not use that test be-
cause both φ values are not independent.

After looking at the relationships between the
two φ values, we decided to recreate two of
the plots featured in the paper by Sherrard-
Smith, et al.

The figure below is the recreation of a regres-
sion that was performed in the paper that
showed that there was a slight decrease in in-
door biting over time.

The second figure below is a similar regression
that was performed that also demonstrated
that there was a slight decrease in mosquito
bed biting over time. In the first figure, on
average, for every one year increase, the av-
erage change in φI is -0.0028 (p=0.036 with
α=0.05 (R)). In the second figure, on aver-
age, for every one year increase, the average
change in φB is -0.003 (p=0.018 with α=0.05
(R)). Therefore the decrease over time is sig-
nificant.

What we can learn from these plots is that a
simple linear regression does not fit the model
well for a number of reasons. The first, is that
the data is highly skewed to later years. The
primary thing this plot is showing us, is that
there was more data collected in years after
2010 as opposed to prior to 2010. These plots
without the regression lines can be used to
demonstrate that there were more data points
in later years. Because we (and the authors of
the paper aforementioned) do not have spe-
cific dates for when this data was collected
but rather just have the year. If the tem-
poral resolution was more granular, we could
perform a time series decomposition to deter-
mine if there is a seasonal component, what
the trend of the data is, and we could esti-
mate the distribution of the noise. However,
the analysis as above, may not be telling the
whole story.

To potentially get a better idea of the true av-
erage change in the φ’s that isn’t influenced
by the number of data points, we can look
at the average points for each year. First,we
started by grouping the data by country and
year and averaging the φ values. The reason
for this, is that the original dataset contained
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a couple of “duplicate” values from various
studies. In other words, if paper 1 has data
for Benin in 2008 and paper 2 also has data
for Benin in 2008, then we averaged the φ
values for Benin in 2008 and kept just that.
We then reran the same regressions on the
averaged yearly data.

After trying the yearly average technique, we
see that the regression line looks a bit bet-
ter however, on average, for every one year
increase, the average change in the average
yearly φI value, is -0.0045 (p=0.007 with
α=0.05). Therefore the relationship is sig-
nificant.

For in bed (see Appendix), we found that on
average, for every one year increase, the aver-
age change in the average yearly φB value, is
-0.0044 (p=0.015 with α=0.05). So, though
we would argue that the regression line looks
better, we see that there is still a significant
decrease over time.

Given that these simple linear regressions of
φ versus time potentially do not return ac-
curate results, we decided to shift directions

away from the paper and perform our own
exploratory analysis. In particular, we used
variables not included in the paper such as
population, GDP, average humidity, average
temperature, and average yearly precipita-
tion. We conducted a multiple linear regres-
sion, corrected the assumptions, performed a
sensitivity analysis, and checked for autocor-
relation.

4 Results

As mentioned above, our primary analysis
was a multiple linear regression.

4.1 Correlation

To determine which variables we should in-
clude in our analysis, we began by looking at
a correlation plot of all of our variables:
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Diagonally, the variables are: year (1989-
2017), population (in millions of people),
GDP (in billions of USD), average relative
humidity (as a percentage), average yearly
temperature (in Fahrenheit), average yearly
precipitation (in millimeters), the proportion
of mosquito bites indoors, and the proportion
of mosquito bites in bed.

The most important things to note about the
correlation plot above is the correlation and
the significance. First, we notice that the cor-
relation between φB and φI is very high at
0.98. This relationship was elaborated on in
the Methods section.

For another, we see that population and GDP
are highly correlated (0.65). Note that GDP
is defined as

GDP = C +G+ I +NX

where C is total consumption, G is total gov-
ernment expenditure, I is the sum of invest-
ments, and NX are net exports. The defini-
tion of GDP makes it clear why population is
correlated with it. Though population is not
explicitly a part of the formula, it is implicitly
a component. In fact, if we look at the scatter
plot of population and GDP, we see that the
values are nearly perfectly correlated except
for at least one outlier.

Another value of note is the correlation be-
tween relative humidity and precipitation.
This relationship seems logical as when it is
more humid, it rains more or vise versa.

Now, the relationships between the other pre-
dictors and the φ values are what we are
most interested in looking at. First, note that
there is a slightly negative relationship be-
tween year and both φ values. It is interest-
ing to note that there appears to be a weakly
negative relationship between year and the

proportion of biting indoors/in bed (i.e. we
see lower φ values for later years).

We can also see that population has a weakly
negative relationship with φ. It’s possible
that countries with more people have better
access to protection against mosquitoes such
as nets and insecticide. Although, looking at
the scatter plot of the relationship between
the two, we see that the relationship is likely
not significant and/or non-linear.

Finally, if we look at average relative humid-
ity, we see a weak positive relationship with
the φ values. Once again, this is reasonable
as we would expect to see more mosquitoes
in more humid regions.

4.2 Multiple Linear Regression

We then focused on two multiple linear re-
gressions:

φI = β0 + β1Y + β2S + β3P + β4G+

+ β5H + β6T + β7Pr + ε

φB = β0 + β1Y + β2S + β3P + β4G+

+ β5H + β6T + β7Pr + ε

where Y= year, S = species (a factor vari-
able), P = population, G = GDP, H = hu-
midity, T = temperature, and Pr = precip-
itation. Note that we excluded country and
the other φ from each regression. The reason
for excluding country is that H, T and Pr are
all the same for each country and year combo.
We excluded the other φ value from each re-
gression because the φ values were highly cor-
related and were both derived values.

The plots that follow are the standard 4 plots
for checking regression assumptions.
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In the figure above, looking at the residuals
versus fitted values, we see that we do not ap-
pear to satisfy linearity because there appears
to be a slight parabolic curve. We mostly sat-
isfy constant variance (some clustering but
not too bad). We also note from the QQ plot
that the residuals and data are very clearly
not normal. The final assumption is that the
residuals are independent. The figures above
do not provide any insight into this but later
in this section, we’ll dive into checking and
correcting this assumption.

Note, the figures demonstrate the φI and φB

assumptions respectively. Because both φ
values are highly correlated, we see that there
isn’t a significant difference between the plots
above and the plots for φI . We again, do sat-
isfy homoskedasticity but don’t satisfy linear-
ity and do not satisfy normality.

Note, also that in both figures, by studying
the residual vs leverage point plot, we see one
blue point in the upper right corner. That
value corresponds to Nigeria in 2014. Because
it was so influential (the Cook’s Distance ¿ 1),
we chose to exclude that value.

In the following sections, we determine what
the best parameters are and whether we
should be using a reduced or full model.

4.3 Sensitivity

Here, we conducted a sensitivity analysis on
the parameters to determine how the model
output changes with varying parameter in-
puts. If a small change in the parameter value
results in a big model output change, then the
output is sensitive to that parameter [5]. Our
sensitivity results can be seen in the following
SRC plots.
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From these plots, it is clear that humidity is
the most sensitive parameter in both models.
This is not surprising because it is the only
significant parameter in our new model that
does not contain the influential point. An-
other interesting thing to take note is that
population (p=0.250) is less sensitive than
GDP (p=0.152) in the indoor model while
population (p=0.004) is more sensitive than
GDP (p=0.477) in the in bed model. These
align with the p-values for the parameter val-
ues that we obtained in our multiple regres-
sion model because the lower the p-value of
the parameter the higher the sensitivity of the
parameter. This indicates that as the param-
eter becomes more significant, its sensitivity
increases.

4.4 Partial F-test

In this section, we decided to explore the pos-
sibility of reducing our model. Since humid-
ity was the only significant parameter in our
model, we decided that correlation between
parameters may be causing parameters to not
be significant in the model. With that said,
we decided to remove all of the parameters
except for GDP and humidity in the indoor

model and to remove all of the parameters
except for population and humidity in the in
bed model. So the reduced models are:

φI = β0 + β1G+ β2H + ε

φB = β0 + β1P + β2H + ε

These were the respective parameters that we
decided to use because they had the highest
sensitivity measures. This test went well and
both reduced models were significant based
on the partial F-test conducted which means
that we should be using these models instead
of the full models. Below, we see the results
of the multiple linear regression.

For the figure above, we can see that a re-
duced multiple linear regression doesn’t quite
fit the data well, however we find that this is
the best result given the parameters we in-
cluded in our analysis.
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Similarly here, we see that our model doesn’t
fit the data perfectly but it is reasonable. In
this figure in particular, it’s possible that the
data is skewed by countries that have larger
populations.

4.5 Normality and Linearity
Assumptions

Unfortunately, reducing our model did not
correct the normality and linearity assump-
tions that are being violated. To correct these
violations, we decided to explore transforma-
tions of specific parameters and attempted to
utilize the box-cox function in R to see how
the response could be transformed. These
transformations did not provide any better
results so we attempted to see if an inter-
action term was present in the model. We
decided to look at the interaction of the
mosquitoes species and humidity to see if
different species lived in more humid areas
which in turn would result in different propor-
tions. This attempt at finding an interaction
term was also unsuccessful and insignificant

so we ultimately decided that the error terms
were correlated because of the temporal com-
ponent at the level of years and may be caus-
ing the normality and linearity assumptions
to not be upheld.

4.6 Auto Correlation Function

As mentioned in the Multiple Linear Regres-
sion subsection, the final assumption that
needed to be checked is that the error terms
are uncorrelated. Because the data included
a temporal component at the level of years,
we investigated whether the residuals were
correlated with residuals at previous time
steps (lag(h)) when looking at the two re-
duced models.

The figure above indicates that we are seeing
autocorrelation at up to lag(2). This means
that the residuals are correlated between time
t and t−2. The autoregressive model of order
2 (AR(2)) is:

Xt = µ+ ϕ1Xt−1 + ϕ2Xt−2 + εt

where Xt is the time series (in our case, the
residuals of the MLR of the proportion of peo-

9



ple being bit inside) and ϕ1 and ϕ2 are con-
stants. After adjusting for the errors having
autocorrelated terms, we see the new ACF
looks much better:

The figure above tells us that we do not have
any significant correlation between time steps
t and t − h. For similar plots of in bed
mosquito biting residual ACFs, please refer
to the Appendix.

5 Conclusion

Overall, this paper provided insight into how
indoor and in bed mosquito bites can be at-
tributed to a country’s attributes, but we un-
fortunately cannot make any definite conclu-
sions. This is because of the fact that all of
our data was not only all observational, but
assumptions were made about the responses
and predictors such as how φ is calculated and
how respective values for years are grouped
together. Furthermore, we were not able to
completely correct the implied non-linearity
relationship given in the residuals versus fit-
ted values plot and the normality assumption

was still not upheld after creating our new
model.

Even with all of these caveats, we still learned
a lot from this project. We learned how to
conduct an effective exploratory data analy-
sis, how to check for linear regression assump-
tions in others’ work, how to conduct a sensi-
tivity analysis, how to utilize autocorrelation,
and most importantly we were able to see how
material that we learned in class can be ap-
plicable to real world research questions. Ad-
ditionally, we ultimately learned that in order
to model φ for in bed and indoors the most
significant model is the reduced model that
only has humidity and GDP or population as
predictors. This is quite shocking considering
neither were in the original dataset. Over-
all, we believe that we corrected for the error
made in the original paper and were able to
create our own model that more accurately
and correctly portrayed the data.

To improve the design of this study, we would
correct how the study used many data points
for a given year composed of different sources.
By doing this, they introduced additional er-
ror by not keeping the data collection consis-
tent and they skewed their data towards years
with more data points. We would also request
that data points were measured by not only
year, but month or week so that seasonality
could be accounted for. Finally, we would try
to find more data points from earlier years so
that a more accurate analysis can be made
for prior years.

Finally, if time permitted or if we decide
to return to this research, we would would
look into how a non-parametric methodology
could potentially provide a better result and
if it could correct the error violations that
were found. In addition to this, we would
also investigate how error terms may be spa-
tially correlated.
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6 Appendix

6.1 Plots

Below is the figure of the regression on the averaged yearly in bed φ values.
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The ACF for in bed is very similar to the ACF of indoor. The two following plots indicate
that we also see that the residuals can be modeled with AR(2) process and when we account
for that, the ACF looks much better.
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6.2 Code

install.packages("PerformanceAnalytics")

library(ggplot2)

library(dplyr)

library(latex2exp)

library(PerformanceAnalytics)

data = read.table("data/mean_phi_by_country_and_year.csv",

sep =’,’, header = TRUE)

data = data[ , !(names(data) %in% c(’X’))]

head(data,5)

p <- ggplot(data, aes(x=year_cleaned, y=Indoor_phi_mnHuman)) +

geom_smooth(method = "lm") +

geom_point() + xlab(’Year’)+

ylab(TeX("Mean Proportion of Mosquito Biting Indoors Across

Studies($\\phi_I$)")) +

ggtitle(’Phi Indoor over Time’)

p

summary(lm(data$Indoor_phi_mnHuman~data$year_cleaned))

p <- ggplot(data, aes(x=year_cleaned, y=Inbed_phi_mnHuman)) +

geom_smooth(method = "lm") +

geom_point() + xlab(’Year’)+

ylab(TeX("Mean Proportion of Mosquito Biting In Bed Across

Studies($\\phi_I$)")) +

ggtitle(’Phi In Bed over Time’)

p

summary(lm(data$Indoor_phi_mnHuman~data$year_cleaned))

#Phi Indoor

years=c("1989","1992","1995","1996","1997","1998","1999",

"2003","2004","2005","2006","2007","2008","2009",

"2010","2011","2012","2013","2014","2015","2016",

"2017")

j=1

en = c()

for(k in years){

en[j]=with(data,mean(Indoor_phi_mnHuman[year_cleaned==k]))

j=j+1

}

df=data.frame(years,en)

p <- ggplot(df, aes(x=years, y=en,group=1)) +

geom_line( color="steelblue") +

geom_smooth(method = "lm", color=’red’) +

geom_point() +

xlab(’Year’)+ ylab(TeX("Mean Proportion of Mosquito Biting
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Indoors ($\\phi_I$)")) +

ggtitle(’Phi Indoor over Time’)

p

#Phi Inbed

years=c("1989","1992","1995","1996","1997","1998","1999",

"2003","2004","2005","2006","2007","2008","2009",

"2010","2011","2012","2013","2014","2015","2016",

"2017")

j=1

en = c()

for(k in years){

en[j]=with(data,mean(Inbed_phi_mnHuman[year_cleaned==k]))

j=j+1

}

df=data.frame(years,en)

p <- ggplot(df, aes(x=years, y=en,group=1)) +

geom_line( color="steelblue") +

geom_smooth(method = "lm", color=’red’) +

geom_point() +

xlab(’Year’)+ ylab(TeX("Mean Proportion of

Mosquito Biting In Bed ($\\phi_B$)")) +

ggtitle(’Phi In Bed Over Time’)

p

chart.Correlation(data[, c(’year_cleaned’,

’population_in_millions’,

’gdp_in_billion_usd’,

’avg_relative_humidity’,

’avg_yearly_temperature_F’,

’avg_annual_precip_mm’,

’Indoor_phi_mnHuman’,

’Inbed_phi_mnHuman’)], histogram=TRUE, pch=19)

lmod = lm(Indoor_phi_mnHuman ~ . - Country_clean

- Inbed_phi_mnHuman, data = data)

summary(lmod)

tmp<- melt(data[,c(’Indoor_phi_mnHuman’, ’Inbed_phi_mnHuman’)])

ggplot(tmp,aes(x=value, fill=variable)) + geom_density(alpha=0.25)

#without point 67

reminf=data[-c(67),]

lmod = lm(Indoor_phi_mnHuman ~ . - Country_clean

- Inbed_phi_mnHuman, data = reminf)

summary(lmod)

par(mfrow=c(2,2))
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plot(lmod)

othlmod=lm(Inbed_phi_mnHuman ~ . - Country_clean

- Indoor_phi_mnHuman, data = data)

summary(othlmod)

par(mfrow=c(2,2))

plot(othlmod)

othlmod=lm(Inbed_phi_mnHuman ~ . - Country_clean

- Indoor_phi_mnHuman, data = reminf)

summary(othlmod)

par(mfrow=c(2,2))

plot(othlmod)

library(caret)

install.packages("ggthemes")

library(ggthemes)

install.packages("sensitivity")

library(sensitivity)

library(boot)

intercept=c(rep(3.041e+00 ,94))

year=reminf$year_cleaned*-1.274e-03

newdata=reminf

newdata <- newdata %>%

mutate(species = ifelse(species == "An_funestus",1,0))

An_funestus=newdata$species*1.614e-02

gamb=reminf

gamb <- gamb %>%

mutate(species = ifelse(species == "An_gambiae_sl",1,0))

An_gamb=gamb$species*2.886e-02

other=reminf

other <- other %>%

mutate(species = ifelse(species == "other",1,0))

othspec=other$species*-4.119e-02

pop=reminf$population_in_millions*-7.770e-04

gdp=reminf$gdp_in_billion_usd*-1.736e-03

humid=reminf$avg_relative_humidity*4.044e-03

temp=reminf$avg_yearly_temperature_F*2.019e-03

precip=reminf$avg_annual_precip_mm*-1.949e-05

X <- data.frame(intercept,year,An_funestus,An_gamb,othspec,pop,gdp,humid,temp,precip)

head(X)

# linear model : Y = X1 + X2 + X3
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y <- with(X, intercept + year + An_funestus + An_gamb +

othspec + pop + gdp + humid + temp + precip)

# # sensitivity analysis

x <- src(X, y, rank=FALSE, nboot = 0, conf=0.95)

print(x)

plot(x,main="SRC Indoor Phi")

intercept=c(rep( 3.791e+00,94))

year=reminf$year_cleaned*-1.703e-03

othnewdata=reminf

othnewdata <- othnewdata %>%

mutate(species = ifelse(species == "An_funestus",1,0))

An_funestus=othnewdata$species*8.702e-03

othgamb=reminf

othgamb <- othgamb %>%

mutate(species = ifelse(species == "An_gambiae_sl",1,0))

An_gamb=othgamb$species*1.840e-02

othother=reminf

othother <- othother %>%

mutate(species = ifelse(species == "other",1,0))

othspec=othother$species*-4.056e-02

pop=reminf$population_in_millions*-9.155e-04

gdp=reminf$gdp_in_billion_usd*-1.238e-03

humid=reminf$avg_relative_humidity*4.096e-03

temp=reminf$avg_yearly_temperature_F*2.355e-03

precip=reminf$avg_annual_precip_mm*-1.382e-05

X <- data.frame(intercept,year,An_funestus,An_gamb,othspec,pop,gdp,humid,temp,precip)

head(X)

# linear model : Y = X1 + X2 + X3

y <- with(X, intercept + year + An_funestus + An_gamb +

othspec + pop + gdp + humid + temp + precip)

# # sensitivity analysis
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x <- src(X, y, rank=FALSE, nboot = 0, conf=0.95)

print(x)

plot(x)

#indoor

mse1=mean(lmod$residuals^2)

mse1

#inbed

mse2=mean(othlmod$residuals^2)

mse2

redlmod = lm(Indoor_phi_mnHuman ~ . - Country_clean

- Inbed_phi_mnHuman - year_cleaned -

species - population_in_millions - avg_yearly_temperature_F

- avg_annual_precip_mm, data = reminf)

par(mfrow=c(2,2))

plot(redlmod)

summary(redlmod)

redothlmod=lm(Inbed_phi_mnHuman ~ . - Country_clean

- Indoor_phi_mnHuman - year_cleaned -

species - gdp_in_billion_usd - avg_yearly_temperature_F

- avg_annual_precip_mm, data = reminf)

summary(redothlmod)

plot(redothlmod)

#inbed

anova(redlmod,lmod)

#indoor

anova(redothlmod,othlmod)

#indoor

newmse1=mean(redlmod$residuals^2)

newmse1

#inbed

newmse2=mean(redothlmod$residuals^2)

newmse2

lmodinteract = lm(Indoor_phi_mnHuman ~ . - Country_clean

- Inbed_phi_mnHuman + species:avg_relative_humidity, data = reminf)
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summary(lmodinteract)

anova(lmod, lmodinteract)

othlmodinteract = lm(Inbed_phi_mnHuman ~ . - Country_clean

- Indoor_phi_mnHuman + species:avg_relative_humidity, data = reminf)

summary(othlmodinteract)

anova(othlmod, othlmodinteract)

par(mfrow=c(2,2))

plot(lmod)

bacf = acf(lmod$residuals, plot=FALSE)

alpha <- 0.95

conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(bacf$n.used)

bacf$acf %>%

as_tibble() %>% mutate(lags = 1:n()) %>%

ggplot(aes(x=lags, y = V1)) +

scale_x_continuous(breaks=seq(0,41,4)) +

geom_hline(yintercept=conf.lims, lty=2, col=’blue’) +

labs(y="Autocorrelations", x="Lag", title= "ACF") +

geom_segment(aes(xend=lags, yend=0)) +geom_point()

#+ theme_setting

arima_fit <- with(data, arima(Indoor_phi_mnHuman, order = c(1, 0, 0),

xreg = cbind(year_cleaned, population_in_millions,

gdp_in_billion_usd,

avg_relative_humidity,

avg_yearly_temperature_F,

avg_annual_precip_mm

)))

bacf = acf(arima_fit$residuals, plot=FALSE)

alpha <- 0.95

conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(bacf$n.used)

bacf$acf %>%

as_tibble() %>% mutate(lags = 1:n()) %>%

ggplot(aes(x=lags, y = V1)) + scale_x_continuous(breaks=seq(0,41,4)) +

geom_hline(yintercept=conf.lims, lty=2, col=’blue’) +

labs(y="Autocorrelations", x="Lag", title= "ACF") +

geom_segment(aes(xend=lags, yend=0)) +geom_point() #+ theme_setting

par(mfrow=c(2,2))

arima_fit

library(nlme)

genls = gls(Indoor_phi_mnHuman ~ . - Country_clean - Inbed_phi_mnHuman,

data = data,

correlation=corARMA(p=1,q=0))

summary(genls)

par(mfrow=c(2,2))
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plot(genls$fitted, genls$residuals)

abline(h=0)

qqnorm(genls$residuals)

qqline(genls$residuals)

lmod2 = lm(Indoor_phi_mnHuman ~ log(population_in_millions)+

gdp_in_billion_usd+

avg_relative_humidity+avg_yearly_temperature_F+

avg_annual_precip_mm+Indoor_phi_mnHuman - Country_clean

- Inbed_phi_mnHuman, data = data)

head(data)

summary(lmod2)

par(mfrow=c(2,2))

plot(lmod2)

data[67,]

moddata=data[-c(67),]

lnewmod2 = lm(Indoor_phi_mnHuman ~ population_in_millions-gdp_in_billion_usd+

avg_relative_humidity-avg_yearly_temperature_F-

avg_annual_precip_mm - Country_clean

- Inbed_phi_mnHuman, data = moddata)

summary(lnewmod2)

par(mfrow=c(2,2))

plot(lnewmod2)

library(MASS)

boxcox(lnewmod2, lambda = seq(-2, 2, 1/10),

plotit = TRUE, eps = 1/50, xlab = expression(lambda),

ylab = "log-Likelihood")

## Plot MLR

p = ggplot(reminf, aes(y=Indoor_phi_mnHuman,x=gdp_in_billion_usd,

color=avg_relative_humidity))+

geom_point()+

geom_smooth(method = "lm", color=’red’) +

ggtitle(’Reduced MLR - Phi Indoor’)

p

p = ggplot(reminf, aes(y=Inbed_phi_mnHuman,x=population_in_millions,

color=avg_relative_humidity))+

geom_point()+

geom_smooth(method = "lm", color=’red’) +

ggtitle(’Reduced MLR - Phi In Bed’)

p

20


	Introduction
	Data
	Methods
	Results
	Correlation
	Multiple Linear Regression
	Sensitivity
	Partial F-test
	Normality and Linearity Assumptions
	Auto Correlation Function

	Conclusion
	Appendix
	Plots
	Code


