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1 Introduction

There are numerous ways to analyze a dataset. While true, there is almost always a method
that works best. In this project, we were given very little information about a dataset except
that we may be interested in looking into mixture models. Typically, given a certain number
of features, the goal is to predict the target value, y. For this project, we were given three
features, var1, var2, and var3 and our goal was to model y.

In the following sections we will perform exploratory data analysis (EDA), dive into
modeling, and compare the models to determine why the best model is indeed best.

2 Analysis

When given the dataset, the variables each appeared random and it would be easy to suggest
that the data was noise. However, upon beginning the analysis, it became clear that the
data was more intricate than previously assumed. The first step in the investigation was
studying the correlations between each variable. This was achieved by looking at a pair plot
as seen below.
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Simply looking at the plot, we can see that there is a positive correlation between variable
2 and variable 3. For linear models, multicolinearity can result in solutions that vary greatly
and may be unstable numerically. In order to mitigate this issue, it is best to look at the R
summary from the linear model: y = β0 + β1X1 + β2X2 + β3X3 where the X’s correspond
to var1, var2, and var3 to determine which variable we can remove.

Figure 1: Summary of linear model Figure 2: Exclude var2

By looking at the summary in R of the linear model with three variables, we find that
variable 2 is not statistically significant under an alpha value of 0.05. This means we can
safely exclude that variable from our model. Our updated linear model is as follows:

y = β0 + β1X1 + β3X3 + ε (1)

Typically, in order for a linear model to satisfy least squares assumptions, we want the
models residuals, ε, to be normal. However upon examination it appears that the residuals
exhibit multimodality and therefore the residuals are not normal as seen in the Figure 3 that
follows.

Figure 3: Multimodal Residuals Figure 4: Heteroskedasticity

Non normal residuals means that the homoskedasticity assumption isn’t satisfied. This
can be verified by looking at the standardized residuals versus fitted values plot (Figure 4.
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Since the residuals are not equally spread, but rather, exhibit a clear linear pattern, then it
is clear that we have heteroskedasticity. Therefore we must do our modeling on the residuals.

3 Models

The model I chose to use the residuals was a mixture model as suggested in class. The
residuals looked like they had approximately two modes so I chose to use a two component
mixture.

3.1 Model 1

In my first model, I used two normals as my mixture components. Note however that this
model does not take into account heteroskedasticity. Here each component has a distribution
of: yi ∼ N(xβ, σ) in vector notation. This mixture assumes a linear regression with normal
errors, which explicitly ignores the heteroskedasticity in the data.

The results can be seen in Figures 5 and 6. Here, the black line in Figure 5 represents
the density of the residuals and the red line represents the mixture approximation density.
In Figure 6, the red line is the density of the y values, and the black line is the y predictions.

Figure 5: Residual Mixture Approximation Figure 6: Y Prediction
In this model, I used cauchy distributions for each of the beta values. For model 1 and model
2, I used a β0 of one component where the distribution was cauchy(0, 2) which is slightly
narrower than the other mixtures which was cauchy(0.6, 5). The shifted mean values imply
that there are at least two different intercepts in the residual model. The other β values
all had cauchy distributions with parameters 1 and 0.5. This is a strong prior because the
cauchy curve is sharp but has long tails.

The sigma values were given an improper flat prior, [0,∞]. These sigmas were then use
in our normal mixture components.

Once we had approximated the distribution of the residuals, we needed to find our pre-
dictions of y. In order to do so, we took the beta values from the linear regression and a
sample from the mixture distribution for each data points (var1, var2, var3) and created
a list of our predicted values. We then plotted the density of the given y values and the
density of the predicted y values.
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While we are able to capture the multimodality of the residuals, we find that our predic-
tions for y are poor. This is because we did not introduce any variability in the variance of
the residuals. In this model, the variance does not depend on any of the features.

3.2 Model 2

We account for heteroskedasticity by assigning a linear prior to the variance of the resid-
uals. Our component distribution can be rewritten as follows: yi ∼ N(xβ, λiω). If λ2 ∼
InvGamma(γ/2, γ/2) then instead of two normal mixtures, we can use: yi ∼ StudentT (γ,Xβ, σ)[1]
as our distributions of our components. In this model, I assumed that both components had
a studentized t-distribution which allowed me to account for the heteroskedasticity in the
model under the assumption that the variance is distributed as an inverse gamma.

Figure 7: Residual Mixture Approximation Figure 8: Y Prediction
Here, the red line in Figure 7 represents the density of the residuals and the black line

represents the mixture approximation density. In Figure 8, the red line is the density of the
y values, and the black line is the y predictions.

In this model, we keep the same priors for the β0, the intercept, and the values for the
hyper priors of the mean for each mixture as we had for Model 1. The other beta values
stay the same as Model 1 as well; coming from a cauchy distribution with parameters 1 and
0.5. As mentioned above, this is a strong prior as it is steep with longer tails. However, the
longer tails make the prior less informative than a normal.

We can see that we are able to approximate the residuals distribution with the mixture
model a bit better when we account for the heteroskedasticity in the model. While we
underestimate one of the modes slightly, over estimate the second and underestimate the
tail on the right hand side, the shape of the mixture approximation is closer to that of the
density of the residuals than Model 1.

We can see that our mixture approximation is modeling the residuals well by taking
a sample from the mixture and seeing whether they are on our approximated posterior
distribution of the residuals. Four examples of this can be seen in Figures 9 through 12.
While it is difficult to see the multimodality of the residuals in this posterior distribution
(the histogram), it is clear that the the true residual values (red line) appear to line up with
our residual approximation.
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Figure 9: Sample residual 1

Figure 10: Sample residual 2

Figure 11: Sample residual 3

Figure 12: Sample residual 4
We can verify that our model is exploring the space by observing the label switching in

Shiny Stan. If the labels appear to be jumping between two modes (given a two component
mixture) then we know that our MCMC is properly exploring the space. [2]

Figure 13: µ1 chain 1

Figure 14: µ1 chain 2

Figure 15: µ1 chain 3

Figure 16: µ1 chain 4

Because each chain appears to be finding the two modes, then we can say that we are
successfully exploring the space. However, in chain 2, chain 3, and chain 4, we see that the
chains appear to be lingering by one mode which typically implies a high autocorrelation and
that the MCMC is having trouble exploring the space. Due to the fact that the modes of the
residuals are so close together, it is reasonable that the mixture is having trouble jumping
and separating the two modes. Even simply by observing the density of the residuals, we
can see that the modes are nearly indistinct.
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4 Comparison

There are multiple ways to analyze how well each model is doing. Three methods that will be
used in this section are bayes factors (using the bridgesampling package in R), leave-one-out
(LOO) cross-validation and Rhat values. Bayes factors are a form of bayesian hypothesis
testing [3]. Bayes factors aim to quantify the support for one model over another and do not
quantify how correct the models are. Leave-one-out cross validation is K-fold cross validation
at its extreme. In this cross validation method, N separate times, the mixture is trained on
all of the data points except for one point and a prediction is made for that point. [4] Rhat
values are a basic way of assessing convergence of chains.

Starting with bayes factors, I used the R function bridgesampling. By using the bridge
sampler function, I was able to find the log marginal likelihood of each stan fit object (each
model). Then, I computed the bayes factor between model 1 and model 2 to find that model
1 is favored over model 2 with a bayes factor of 4.322. Given this result, we want to claim
that model 1 is better than model 2.

Below we can see the results of loo and model 1 in Figure 17 and the results of loo
and model 2 in Figure 18. We note that the goal of the pareto k k value is to assess the
reliability of PSIS (Pareto Smoothed Importance Sampling) which is a method for stabilizing
importance ratios. We note that the majority of the k values fall within the “good” range
for both models. This means that “the variance of the raw importance ratios is finite, the
central limit theorem holds, and the estimate converges quickly” [5]. Note, that while both
models return very similar results, we see that there is one more value that falls into the
good range for our second model. Here, we want to say that model 2 is better than model 1.

Figure 17: Pareto k diagnostic Model 1 Figure 18: Pareto k diagnostic Model 2
We can compare the two models using loo by first finding the loo objects of each stan

model and then comparing them with loo compare.

A lower elpd diff value indicates the preferred model. Here, since model 2 appears to be
lower, we can verify that loo thinks that model 2 is the best model.

Looking at the autocorrelation of lambda, the mixture coefficient, seen below

Figure 19: Autocorrelation Model 1 Figure 20: Autocorrelation Model 2
we can see that the autocorrelation is actually greater for more lag in model 2. This means
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that our lambda values in our second model correlate with values more than one time period
apart. The lambdas on our second model correlate with more previous time periods than in
model 1. So, while we may have dealt with heteroskedasticity in model 2, we fail to account
for autocorrelation.

Finally, we can look at the Rhat values:

Figure 21: Model 1 Figure 22: Model 2

We want an Rhat value that is close to 1. Here again, we find that the first model
appears to have better Rhat values than model two. Given that some of the second models
rhat values are greater than 1.1, a popular threshold, we can assume that some of these
chains have not converged. Possible solutions for this are either running the chains for more
iterations until they eventually converge or by spending more time tuning parameter.

5 Conclusion

Given these conflicting results, it is unclear which model fits our data best. While bayes
factors prefer model 1 over model 2, LOO prefers model 2 and the rhat values seem to favor
model 1. Since the normal distribution is well understood by beginning statistics students
(the “bell curve”), the first model may be suitable. The first model is less complex than the
second, though only slightly. However, since the second model takes the heteroskedasticity
into account, the second model is likely more correct. The hyper parameters for the hyper
priors and priors likely need to be tuned more, but overall, the non normal, multimodal
residuals must be accounted for for a valid linear model. While the second model is theoret-
ically better, it does not account for autocorrelation which will be accounted for in future
work.

6 Discussion

While the second model does consider heteroskedasticity, there are various limitations that
still exist in this model as is. For one, it is entirely possible that the residuals have more
than one mode, in which case we would need to increase the number of components in our
mixture approximation respectively. For two, it may be useful to look into dimensionality
reduction methods such as principal component analysis to reduce the amount of random
variables under consideration. Additionally, in order to work on the same scale, it may
be useful to standardize the data so that each feature has an equal weight to start with.
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Finally, as mentioned in the sections above, we fail to deal with autocorrelation with these
two models. In future models, we will look into accounting for autocorrelation.

7 Collaborators

• Discussed the project with Kathryn Gray in order to figure out how to start this
project

• Listened to Colin Korbisch’s talk about the project to finally get my stan code to
run

• Talked to Mark Tedder about physically sampling from the mixture in order to get
my y predictions

8 Appendix

Model 1 EDA:

project_data = read.table(’Documents/Bayes/Project/ProjectData.csv’,

sep="\t", header=TRUE)

linear_reg <- lm(Y ~ var1+var3, data=project_data)

r = residuals(linear_reg)

pairs(project_data)

plot(rstandard(linear_reg), main="std residuals vs fitted values",

xlab = "fitted vals", ylab = "std residuals")

library(car)

crPlots(linear_reg)

hist(r,10, main="Residuals")

Model 1 stan:

model<- ’

data {

int<lower=0> N;

int<lower=1> K;

int<lower=1> J;

matrix[N,K] x;

vector[N] y;

}

parameters {

real<lower=0.1, upper=0.9> lambda;

vector[K-1] beta_val[J]; //slope coefficients

vector<lower=0>[J] sigma;

vector<lower=0, upper=40>[J] coef_int;
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}

transformed parameters{

vector[J] mu;

vector[N] log_lik;

for (n in 1:N){

for (j in 1:J){

mu[j] = x[n, 1:K-1]*beta_val[j]+x[n,K]*coef_int[j];

}

}

for (n in 1:N) {

vector[J] val;

val[1] = log(lambda);

val[2] = log(lambda);

for(j in 1:J){

val[j] += normal_lpdf(y[n] | mu[j], sigma[j]);

}

log_lik[n] = log_sum_exp(val);

}

}

model{

lambda ~ cauchy(5,5); // how likely is one mixture over another

coef_int[1] ~ cauchy(0.3,2);

coef_int[2] ~ cauchy(0.6,5);

for(j in 1:J){

beta_val[j,1:K-1] ~ cauchy(1,0.5); //(0,2.5)

}

{

vector[J] x_beta_jj;

real sample;

for (n in 1:N){

for (j in 1:J){

x_beta_jj[j] = x[n, 1:K-1]*beta_val[j]+x[n,K]*coef_int[j];

}

target += log_mix(lambda,

normal_lpdf(y[n] | x_beta_jj[1], sigma[1]),

normal_lpdf(y[n] | x_beta_jj[2], sigma[2]));

}

}

}

’

Model 1 analyze stan results
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x_temp = as.matrix(sapply(project_data[,c("var1", "var3")], as.numeric))

ones = as.vector(rep(1, 118))

x = cbind(x_temp, ones)

y = as.vector(project_data$Y)

r = as.vector(r)

dat = list(N=118, K=3, J=2, x=x, y=r)

fit1 <- stan(model_code = model, data = dat, iter = 5000, seed = 1234, chains = 4)

posterior1 <- as.data.frame(extract(fit, include = T))

theta = 0.7

b01 = 0.3

b02 = 1.1

b11 = 0.55

b12 = 0.9

b31 = 0.55

b32 = 0.66

sig1 = 4.5

sig2 = 5.9

entry_posterior <- function (entry, N){

post = numeric(N)

dat = as.numeric(entry)

for ( i in 1:N){

if (runif(1) < theta){ post[i] = rnorm(1, b01 + b11*dat[2] + b31*dat[4], sig1) }

else { post[i] = rnorm(1, b02 + b12*dat[2] + b32*dat[4], sig2) } }

return(post)

}

n.sample = 50000

random.entry = sample(1:118, 1)

entry = project_data[random.entry,]

nomix.post1 = entry_posterior(entry, n.sample)

hist(nomix.post1, breaks=30, main=paste("Predicting posterior for",

r[random.entry]), xlim = c(-40,40))

abline(v = r[random.entry], col=’red’)

y_pred_list = c()

for (i in 1:118){

print(i)

entry = project_data[1,]

nomix.post1 = entry_posterior(entry, n.sample)

y_pred = linear_reg$coefficients[1] + linear_reg$coefficients[2]*project_data[i,2] +

linear_reg$coefficients[3]*project_data[i,4] + sample (nomix.post1, size=1)

y_pred_list = append(y_pred_list, y_pred)
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}

plot(density(y), col=’red’, xlim=range(c(0,45)), ylim=range(c(0,0.08)))

par(new=TRUE)

plot(density(y_pred_list), xlim=range(c(0,45)), ylim=range(c(0,0.08)) )

plot(density((r-mean(r))/sqrt(var(r))), xlim=range(c(-3,3)), ylim=range(c(0,0.4)))

par(new=TRUE)

plot(density((posterior$lambda-mean(posterior$lambda))/sqrt(var(posterior$lambda))),

col=’red’, xlim=range(c(-3,3)), ylim=range(c(0,0.4)))

library(shinystan)

launch_shinystan(fit)

Model 2 stan:

model<- ’

data {

int<lower=0> N;

int<lower=1> K;

int<lower=1> J;

matrix[N,K] x;

vector[N] y;

}

parameters {

real<lower=0.1, upper=0.9> lambda;

vector[K-1] beta_val[J]; //slope coefficients

vector<lower=0>[J] sigma;

vector<lower=0, upper=40>[J] coef_int;

}

transformed parameters{

vector[J] mu;

vector[N] log_lik;

for (n in 1:N){

for (j in 1:J){

mu[j] = x[n, 1:K-1]*beta_val[j]+x[n,K]*coef_int[j];

}

}

for (n in 1:N) {

vector[J] val;

val[1] = log(lambda);

val[2] = log(lambda);

for(j in 1:J){

val[j] += student_t_lpdf(y[n] | 10, mu[j], sigma[j]);

}
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log_lik[n] = log_sum_exp(val);

}

}

model{

lambda ~ cauchy(5,5); // how likely is one mixture over another

coef_int[1] ~ cauchy(0,2);

coef_int[2] ~ cauchy(0.6,5);

for(j in 1:J){

beta_val[j,1:K-1] ~ cauchy(1,0.5); //(0,2.5)

}

{

vector[J] x_beta_jj;

real sample;

for (n in 1:N){

for (j in 1:J){

x_beta_jj[j] = x[n, 1:K-1]*beta_val[j]+x[n,K]*coef_int[j];

}

target += log_mix(lambda,

student_t_lpdf(y[n] | 10.1, x_beta_jj[1], sigma[1]),

student_t_lpdf(y[n] | 10, x_beta_jj[2], sigma[2]));

}

}

}

’

Model 2 analysis:

x_temp = as.matrix(sapply(project_data[,c("var1", "var3")], as.numeric))

ones = as.vector(rep(1, 118))

x = cbind(x_temp, ones)

y = as.vector(project_data$Y)

r = as.vector(r)

dat = list(N=118, K=3, J=2, x=x, y=r)

fit <- stan(model_code = model, data = dat, iter = 5000, seed = 1234, chains = 4)

posterior <- as.data.frame(extract(fit, include = T))

theta = 0.7

b01 = 0.3

b02 = 1.1

b11 = 0.55

b12 = 0.9

b31 = 0.55

b32 = 0.66

sig1 = 4.5
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sig2 = 5.9

entry_posterior <- function (entry, N){

post = numeric(N)

dat = as.numeric(entry)

for ( i in 1:N){

if (runif(1) < theta){ post[i] = rst(1, mu=b01 + b11*dat[2] + b31*dat[4],

sigma=sig1, nu=10.1)} }

else { post[i] = rst(1, mu=b02 + b12*dat[2] + b32*dat[4], sigma=sig2, nu=10) } }

return(post)

}

n.sample = 50000

library("LaplacesDemon")

y_pred_list = c()

for (i in 1:118){

print(i)

entry = project_data[1,]

nomix.post1 = entry_posterior(entry, n.sample)

y_pred = linear_reg$coefficients[1] + linear_reg$coefficients[2]*project_data[i,2] +

linear_reg$coefficients[3]*project_data[i,4] + sample (nomix.post1, size=1)

y_pred_list = append(y_pred_list, y_pred)

}

plot(density(y), col=’red’, xlim=range(c(0,45)), ylim=range(c(0,0.08)))

par(new=TRUE)

plot(density(y_pred_list), xlim=range(c(0,45)), ylim=range(c(0,0.08)) )

plot(density((r-mean(r))/sqrt(var(r))), col=’red’ , xlim=range(c(-3,3)),

ylim=range(c(0,0.4)))

par(new=TRUE)

plot(density((posterior$lambda-mean(posterior$lambda))/sqrt(var(posterior$lambda))),

xlim=range(c(-3,3)), ylim=range(c(0,0.4)))

plot(density(y), col=’black’)

plot(density(r))

plot(density(posterior$lambda), col=’red’)

library(shinystan)

launch_shinystan(fit)

library(bridgesampling)

bs_fit1 = bridge_sampler(fit1)

bs_fit = bridge_sampler(fit)

bf(bs_fit1, bs_fit)

library(loo)

loo_fit1 = loo(fit1)
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loo_fit = loo(fit)

loo_compare(loo_fit1, loo_fit)
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